IDEAS home Printed from https://ideas.repec.org/a/bla/jfnres/v29y2006i1p95-112.html
   My bibliography  Save this article

Estimating Expected Excess Returns Using Historical And Option‐Implied Volatility

Author

Listed:
  • Charles J. Corrado
  • Thomas W. Miller

Abstract

We test the relation between expected and realized excess returns for the S&P 500 index from January 1994 through December 2003 using the proportional reward‐to‐risk measure to estimate expected returns. When risk is measured by historical volatility, we find no relation between expected and realized excess returns. In contrast, when risk is measured by option‐implied volatility, we find a positive and significant relation between expected and realized excess returns in the 1994–1998 subperiod. In the 1999–2003 subperiod, the option‐implied volatility risk measure yields a positive, but statistically insignificant, risk‐return relation. We attribute this performance difference to the fact that, in the 1994–1998 subperiod, return volatility was lower and the average return was much higher than in the 1999–2003 subperiod, thereby increasing the signal‐to‐noise ratio in the latter subperiod.

Suggested Citation

  • Charles J. Corrado & Thomas W. Miller, 2006. "Estimating Expected Excess Returns Using Historical And Option‐Implied Volatility," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 29(1), pages 95-112, March.
  • Handle: RePEc:bla:jfnres:v:29:y:2006:i:1:p:95-112
    DOI: 10.1111/j.1475-6803.2006.00168.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1475-6803.2006.00168.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1475-6803.2006.00168.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hui Guo & Robert F. Whitelaw, 2006. "Uncovering the Risk–Return Relation in the Stock Market," Journal of Finance, American Finance Association, vol. 61(3), pages 1433-1463, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    2. Dunis, Christian & Kellard, Neil M. & Snaith, Stuart, 2013. "Forecasting EUR–USD implied volatility: The case of intraday data," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4943-4957.
    3. Bertrand Maillet & Jean-Philippe Médecin & Thierry Michel, 2009. "High Watermarks of Market Risks," Post-Print halshs-00425585, HAL.
    4. Gong, Jue & Wang, Gang-Jin & Xie, Chi & Uddin, Gazi Salah, 2024. "How do market volatility and risk aversion sentiment inter-influence over time? Evidence from Chinese SSE 50 ETF options," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    5. Ahmed, Mohamed S. & Alhadab, Mohammad, 2020. "Momentum, asymmetric volatility and idiosyncratic risk-momentum relation: Does technology-sector matter?," The Quarterly Review of Economics and Finance, Elsevier, vol. 78(C), pages 355-371.
    6. Dror Parnes, 2011. "Developments in corporate creditworthiness around ownership events," International Journal of Managerial Finance, Emerald Group Publishing Limited, vol. 7(4), pages 377-396, September.
    7. Parnes, Dror, 2007. "Time series patterns in credit ratings," Finance Research Letters, Elsevier, vol. 4(4), pages 217-226, December.
    8. Agrrawal, Pankaj & Borgman, Richard, 2010. "What Is Wrong with this Picture? A Problem with Comparative Return Plots on Finance Websites and a Bias Against Income-Generating Assets," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(4), pages 195-210.
    9. Kearney, Fearghal & Murphy, Finbarr & Cummins, Mark, 2015. "An analysis of implied volatility jump dynamics: Novel functional data representation in crude oil markets," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 199-216.
    10. Yibing Chen & Cheng-Few Lee & John Lee & Jow-Ran Chang, 2018. "Alternative Methods to Estimate Implied Variance: Review and Comparison," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-28, December.
    11. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
    12. Corrado, Charles J. & Jordan, Bradford D. & Miller, Thomas Jr. & Stansfield, John J., 2001. "Repricing and employee stock option valuation," Journal of Banking & Finance, Elsevier, vol. 25(6), pages 1059-1082, June.
    13. Konstantinidi, Eirini & Skiadopoulos, George & Tzagkaraki, Emilia, 2008. "Can the evolution of implied volatility be forecasted? Evidence from European and US implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2401-2411, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitrios D. Thomakos & Michail S. Koubouros, 2011. "The Role of Realised Volatility in the Athens Stock Exchange," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 87-124, March - J.
    2. León, Angel & Nave, Juan & Rubio Irigoyen, Gonzalo, 2005. "The Relationship between Risk and Expected Return in Europe," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    3. Chiang, Thomas C., 2019. "Empirical analysis of intertemporal relations between downside risks and expected returns—Evidence from Asian markets," Research in International Business and Finance, Elsevier, vol. 47(C), pages 264-278.
    4. Chen, Jian & Jiang, Fuwei & Liu, Yangshu & Tu, Jun, 2017. "International volatility risk and Chinese stock return predictability," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 183-203.
    5. Damian S. Damianov & Diego Escobari, 2021. "Getting on and Moving Up the Property Ladder: Real Hedging in the U.S. Housing Market Before and After the Crisis," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 49(4), pages 1201-1237, December.
    6. Yuming Li, 2017. "Risks and rewards for momentum and reversal portfolios," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 289-315, August.
    7. Robert F. Whitelaw, 1997. "Time-Varying Sharpe Ratios and Market Timing," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-074, New York University, Leonard N. Stern School of Business-.
    8. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    9. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Is market fear persistent? A long-memory analysis," Finance Research Letters, Elsevier, vol. 27(C), pages 140-147.
    10. Tobias Adrian & Richard K. Crump & Erik Vogt, 2019. "Nonlinearity and Flight‐to‐Safety in the Risk‐Return Trade‐Off for Stocks and Bonds," Journal of Finance, American Finance Association, vol. 74(4), pages 1931-1973, August.
    11. Xingzhi Yao & Marwan Izzeldin, 2018. "Forecasting using alternative measures of model‐free option‐implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 199-218, February.
    12. Likai Chen & Ekaterina Smetanina & Wei Biao Wu, 2022. "Estimation of nonstationary nonparametric regression model with multiplicative structure [Income and wealth distribution in macroeconomics: A continuous-time approach]," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 176-214.
    13. Guo, Hui & Savickas, Robert & Wang, Zijun & Yang, Jian, 2009. "Is the Value Premium a Proxy for Time-Varying Investment Opportunities? Some Time-Series Evidence," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(1), pages 133-154, February.
    14. Kim, Eung-Bin & Byun, Suk-Joon, 2021. "Risk, ambiguity, and equity premium: International evidence," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 321-335.
    15. Christian Conrad & Karin Loch, 2015. "Anticipating Long‐Term Stock Market Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1090-1114, November.
    16. Wang, Wenzhao & Duxbury, Darren, 2021. "Institutional investor sentiment and the mean-variance relationship: Global evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 415-441.
    17. Eric Jacquier & Cedric Okou, 2013. "Disentangling Continuous Volatility from Jumps in Long-Run Risk-Return Relationships," CIRANO Working Papers 2013s-14, CIRANO.
    18. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    19. Łukasz Kwiatkowski, 2011. "Bayesian Analysis of a Regime Switching In-Mean Effect for the Polish Stock Market," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 3(4), pages 187-219, December.
    20. Benoît Sévi & César Baena, 2013. "The explanatory power of signed jumps for the risk-return tradeoff," Economics Bulletin, AccessEcon, vol. 33(2), pages 1029-1046.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jfnres:v:29:y:2006:i:1:p:95-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.