IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v27y2023i3p662-675.html
   My bibliography  Save this article

An integrative and prospective approach to regional material flow analysis: Modeling the decarbonization of the North Rhine‐Westphalian steel industry

Author

Listed:
  • Rainer Radloff
  • Ali Abdelshafy
  • Grit Walther

Abstract

North‐Rhine Westphalia is the center of the German and European steel production. Its steel industry is heavily based on the primary production route and emits up to 30 Mt CO2 annually. One possible and increasingly prominent alternative to reduce these emissions is the hydrogen‐based direct reduction. While this technology allows for a near climate‐neutral production of primary steel, it poses substantial impacts on regional energy and material flows. Hence, the aim of this paper is to quantify the alterations in energy and material flows over time via integrating top‐down energy and material flow models with bottom‐up process models. The resulting values of emissions, energy, and material flows are then used to develop prospective scenarios that depict the requirements and consequences of potential pathways toward a climate‐neutral steel production by 2045. The outcomes show that decarbonizing the North Rhine‐Westphalian steel industry leads to an additional demand for renewable energies of up to 52.5 TWh per year, which represents 10% of the current electricity production in Germany. As securing the green electricity demand is a large challenge, the study also analyzes the impact of a partial recourse to natural gas as a reducing agent in combination with other measures like carbon capture and utilization/storage. The results show that such a recourse would reduce the electricity demand to 36.8 TWh. Hence, the paper illustrates relevant implications of the different scenarios, which can be used by policymakers to develop more realistic and resilient strategies for reaching carbon neutrality.

Suggested Citation

  • Rainer Radloff & Ali Abdelshafy & Grit Walther, 2023. "An integrative and prospective approach to regional material flow analysis: Modeling the decarbonization of the North Rhine‐Westphalian steel industry," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 662-675, June.
  • Handle: RePEc:bla:inecol:v:27:y:2023:i:3:p:662-675
    DOI: 10.1111/jiec.13387
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13387
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oliver Schwab & David Laner & Helmut Rechberger, 2017. "Quantitative Evaluation of Data Quality in Regional Material Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 21(5), pages 1068-1077, October.
    2. Frederick W. Allen & Priscilla A. Halloran & Angela H. Leith & M. Clare Lindsay, 2009. "Using Material Flow Analysis for Sustainable Materials Management," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 662-665, October.
    3. Steven Jackson & Eivind Brodal, 2019. "Optimization of the Energy Consumption of a Carbon Capture and Sequestration Related Carbon Dioxide Compression Processes," Energies, MDPI, vol. 12(9), pages 1-13, April.
    4. Kirschen, Marcus & Badr, Karim & Pfeifer, Herbert, 2011. "Influence of direct reduced iron on the energy balance of the electric arc furnace in steel industry," Energy, Elsevier, vol. 36(10), pages 6146-6155.
    5. Matilda Axelson & Sebastian Oberthür & Lars J. Nilsson, 2021. "Emission reduction strategies in the EU steel industry: Implications for business model innovation," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 390-402, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Yang & Shaowen Lu & Liangyong Wang, 2020. "Fused magnesia manufacturing process: a survey," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 327-350, February.
    2. Samet, Haidar & Ghanbari, Teymoor & Ghaisari, Jafar, 2014. "Maximizing the transferred power to electric arc furnace for having maximum production," Energy, Elsevier, vol. 72(C), pages 752-759.
    3. Nick Blume & Maik Becker & Thomas Turek & Christine Minke, 2022. "Life cycle assessment of an industrial‐scale vanadium flow battery," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1796-1808, October.
    4. Chen, Zhengjie & Ma, Wenhui & Wu, Jijun & Wei, Kuixian & Yang, Xi & Lv, Guoqiang & Xie, Keqiang & Yu, Jie, 2016. "Influence of carbothermic reduction on submerged arc furnace energy efficiency during silicon production," Energy, Elsevier, vol. 116(P1), pages 687-693.
    5. Haendel, Michael & Hirzel, Simon & Süß, Marlene, 2022. "Economic optima for buffers in direct reduction steelmaking under increasing shares of renewable hydrogen," Renewable Energy, Elsevier, vol. 190(C), pages 1100-1111.
    6. Raul Garcia-Segura & Javier Vázquez Castillo & Fernando Martell-Chavez & Omar Longoria-Gandara & Jaime Ortegón Aguilar, 2017. "Electric Arc Furnace Modeling with Artificial Neural Networks and Arc Length with Variable Voltage Gradient," Energies, MDPI, vol. 10(9), pages 1-11, September.
    7. Matteo Prussi & Lorenzo Laveneziana & Lorenzo Testa & David Chiaramonti, 2022. "Comparing e-Fuels and Electrification for Decarbonization of Heavy-Duty Transports," Energies, MDPI, vol. 15(21), pages 1-17, October.
    8. Wang, Yafei & Liang, Sai, 2013. "Carbon dioxide mitigation target of China in 2020 and key economic sectors," Energy Policy, Elsevier, vol. 58(C), pages 90-96.
    9. Chunyan Wang & Yi Liu & Wei‐Qiang Chen & Bing Zhu & Shen Qu & Ming Xu, 2021. "Critical review of global plastics stock and flow data," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1300-1317, October.
    10. Liang, Sai & Zhang, Tianzhu & Wang, Yafei & Jia, Xiaoping, 2012. "Sustainable urban materials management for air pollutants mitigation based on urban physical input–output model," Energy, Elsevier, vol. 42(1), pages 387-392.
    11. Saharudin, Djasmine Mastisya & Jeswani, Harish Kumar & Azapagic, Adisa, 2023. "Bioenergy with carbon capture and storage (BECSS): Life cycle environmental and economic assessment of electricity generated from palm oil wastes," Applied Energy, Elsevier, vol. 349(C).
    12. Steven Jackson, 2020. "Development of a Model for the Estimation of the Energy Consumption Associated with the Transportation of CO 2 in Pipelines," Energies, MDPI, vol. 13(10), pages 1-17, May.
    13. Yolandi Schoeman & Paul Oberholster & Vernon Somerset, 2020. "Value Stream Mapping as a Supporting Management Tool to Identify the Flow of Industrial Waste: A Case Study," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    14. Bożena Gajdzik & Radosław Wolniak & Wies Grebski, 2023. "Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry," Energies, MDPI, vol. 16(8), pages 1-36, April.
    15. Manojlović, Vaso & Kamberović, Željko & Korać, Marija & Dotlić, Milan, 2022. "Machine learning analysis of electric arc furnace process for the evaluation of energy efficiency parameters," Applied Energy, Elsevier, vol. 307(C).
    16. Zhang, Fengrong & Guo, Lina & Xu, Yan & Guan, Xiaoke & Zhu, Fengkai, 2012. "The advantages of multi-cluster structure in city planning: From nutrient flow balance and environmental protection perspective – Take Beijing for example," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 130-135.
    17. Zhao, Ying-jie & Zhang, Yu-ke & Cui, Yang & Duan, Yuan-yuan & Huang, Yi & Wei, Guo-qiang & Mohamed, Usama & Shi, Li-juan & Yi, Qun & Nimmo, William, 2022. "Pinch combined with exergy analysis for heat exchange network and techno-economic evaluation of coal chemical looping combustion power plant with CO2 capture," Energy, Elsevier, vol. 238(PA).
    18. Qiu, Ziyang & Yue, Qiang & Yan, Tianyi & Wang, Qi & Sun, Jingchao & Yuan, Yuxing & Che, Zichang & Wang, Yisong & Du, Tao, 2023. "Gas utilization optimization and exergy analysis of hydrogen metallurgical shaft furnace," Energy, Elsevier, vol. 263(PC).
    19. Chepeliev, Maksym & Aguiar, Angel & Farole, Thomas & Liverani, Andrea & van der Mensbrugghe, Dominique, 2022. "EU Green Deal and Circular Economy Transition: Impacts and Interactions," Conference papers 333431, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Junming Zhu, 2020. "Suggested use? On evidence‐based decision‐making in industrial ecology and beyond," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 943-950, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:27:y:2023:i:3:p:662-675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.