IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v67y2011i3p810-818.html
   My bibliography  Save this article

A Note on MAR, Identifying Restrictions, Model Comparison, and Sensitivity Analysis in Pattern Mixture Models with and without Covariates for Incomplete Data

Author

Listed:
  • Chenguang Wang
  • Michael J. Daniels

Abstract

No abstract is available for this item.

Suggested Citation

  • Chenguang Wang & Michael J. Daniels, 2011. "A Note on MAR, Identifying Restrictions, Model Comparison, and Sensitivity Analysis in Pattern Mixture Models with and without Covariates for Incomplete Data," Biometrics, The International Biometric Society, vol. 67(3), pages 810-818, September.
  • Handle: RePEc:bla:biomet:v:67:y:2011:i:3:p:810-818
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2011.01565.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. G. Kenward, 2003. "Pattern-mixture models with proper time dependence," Biometrika, Biometrika Trust, vol. 90(1), pages 53-71, March.
    2. Jiameng Zhang & Daniel F. Heitjan, 2006. "A Simple Local Sensitivity Analysis Tool for Nonignorable Coarsening: Application to Dependent Censoring," Biometrics, The International Biometric Society, vol. 62(4), pages 1260-1268, December.
    3. Ofer Harel & Joseph L. Schafer, 2009. "Partial and latent ignorability in missing-data problems," Biometrika, Biometrika Trust, vol. 96(1), pages 37-50.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian Li & Julian M. Somers & Xiaoqiong J. Hu & Lawrence C. McCandless, 2019. "Bayesian Sensitivity Analysis for Non-ignorable Missing Data in Longitudinal Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 184-205, April.
    2. Andrea Gabrio & Michael J. Daniels & Gianluca Baio, 2020. "A Bayesian parametric approach to handle missing longitudinal outcome data in trial‐based health economic evaluations," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 607-629, February.
    3. Yongqiang Tang, 2017. "On the multiple imputation variance estimator for control‐based and delta‐adjusted pattern mixture models," Biometrics, The International Biometric Society, vol. 73(4), pages 1379-1387, December.
    4. Antonio R. Linero & Michael J. Daniels, 2015. "A Flexible Bayesian Approach to Monotone Missing Data in Longitudinal Studies With Nonignorable Missingness With Application to an Acute Schizophrenia Clinical Trial," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 45-55, March.
    5. Wang, Y. & Daniels, M.J., 2013. "Bayesian modeling of the dependence in longitudinal data via partial autocorrelations and marginal variances," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 130-140.
    6. Michael J. Daniels & Arkendu S. Chatterjee & Chenguang Wang, 2012. "Bayesian Model Selection for Incomplete Data Using the Posterior Predictive Distribution," Biometrics, The International Biometric Society, vol. 68(4), pages 1055-1063, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. R. Linero, 2017. "Bayesian nonparametric analysis of longitudinal studies in the presence of informative missingness," Biometrika, Biometrika Trust, vol. 104(2), pages 327-341.
    2. Michael J. Daniels & Arkendu S. Chatterjee & Chenguang Wang, 2012. "Bayesian Model Selection for Incomplete Data Using the Posterior Predictive Distribution," Biometrics, The International Biometric Society, vol. 68(4), pages 1055-1063, December.
    3. Antonio R. Linero & Michael J. Daniels, 2015. "A Flexible Bayesian Approach to Monotone Missing Data in Longitudinal Studies With Nonignorable Missingness With Application to an Acute Schizophrenia Clinical Trial," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 45-55, March.
    4. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    5. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    6. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    7. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    8. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    9. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    10. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    11. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    12. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    13. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    14. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    15. David Macro & Jeroen Weesie, 2016. "Inequalities between Others Do Matter: Evidence from Multiplayer Dictator Games," Games, MDPI, vol. 7(2), pages 1-23, April.
    16. Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.
    17. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    18. Simon Mak & Derek Bingham & Yi Lu, 2016. "A regional compound Poisson process for hurricane and tropical storm damage," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 677-703, November.
    19. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    20. Huang, Zhaodong & Chien, Steven & Zhu, Wei & Zheng, Pengjun, 2022. "Scheduling wheel inspection for sustainable urban rail transit operation: A Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:67:y:2011:i:3:p:810-818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.