IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v17y1999i4p466-72.html
   My bibliography  Save this article

Conditional Heteroscedasticity in Qualitative Response Models of Time Series: A Gibbs-Sampling Approach to the Bank Prime Rate

Author

Listed:
  • Dueker, Michael

Abstract

Previous time series applications of qualitative response models have ignored features of the data, such as conditional heteroscedasticity, that are routinely addressed in time series econometrics of financial data. This article addresses this issue by adding Markov-switching heteroscedasticity to a dynamic ordered probit model of discrete changes in the bank prime lending rate and estimating via the Gibbs sampler. The dynamic ordered probit model of Eichengreen, Watson, and Grossman allows for serial autocorrelation in probit analysis of a time series, and this article demonstrates the relative simplicity of estimating a dynamic ordered probit using the Gibbs sampler instead of the Eichengreen et al. maximum likelihood procedure. In addition, the extension to regime-switching parameters and conditional heteroscedasticity is easy to implement under Gibbs sampling. The article compares tests of goodness of fit between dynamic ordered probit models of the prime rate that have constant variance and conditional heteroscedasticity.

Suggested Citation

  • Dueker, Michael, 1999. "Conditional Heteroscedasticity in Qualitative Response Models of Time Series: A Gibbs-Sampling Approach to the Bank Prime Rate," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(4), pages 466-472, October.
  • Handle: RePEc:bes:jnlbes:v:17:y:1999:i:4:p:466-72
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bernard, Henri & Gerlach, Stefan, 1998. "Does the Term Structure Predict Recessions? The International Evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 3(3), pages 195-215, July.
    2. Hausman, Jerry A. & Lo, Andrew W. & MacKinlay, A. Craig, 1992. "An ordered probit analysis of transaction stock prices," Journal of Financial Economics, Elsevier, vol. 31(3), pages 319-379, June.
    3. James D. Hamilton & Oscar Jorda, 2002. "A Model of the Federal Funds Rate Target," Journal of Political Economy, University of Chicago Press, vol. 110(5), pages 1135-1167, October.
    4. Estrella, Arturo & Mishkin, Frederic S., 1997. "The predictive power of the term structure of interest rates in Europe and the United States: Implications for the European Central Bank," European Economic Review, Elsevier, vol. 41(7), pages 1375-1401, July.
    5. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    6. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    7. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    8. Eichengreen, Barry & Watson, Mark W & Grossman, Richard S, 1985. "Bank Rate Policy under the Interwar Gold Standard: A Dynamic Probit Model," Economic Journal, Royal Economic Society, vol. 95(379), pages 725-745, September.
    9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:17:y:1999:i:4:p:466-72. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.