IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Larger than One Probabilities in Mathematical and Practical Finance

Listed author(s):
  • Mark Burgin


    (Department of Mathematics, University of California, Los Angeles,USA)

  • Gunter Meissner


    (MFE Program, Shidler College of Business, University of Hawaii,USA)

Registered author(s):

    Traditionally probability is considered as a function that takes values in the interval [0, 1]. However, researchers found that negative, as well as larger than 1 probabilities could be a useful tool in making financial modeling more exact and flexible. Here we show how larger than 1 probabilities could be handy for financial modeling. First, we define and mathematically rigorously derive the properties of larger than 1 probabilities based on their frequency interpretation. We call these probabilities inflated probabilities because conventional probabilities are never larger than 1. It is transparently demonstrated that inflated probabilities emerge in various real life situations. We then explain how inflated probabilities can be applied to modeling financial options such as Caps and Floors. In trading practice, these options are typically valued in a Black-Scholes-Merton framework, which assumes a lognormal distribution for the price of underlying assets. Since negative values are not defined in the lognormal framework, negative interest rates cannot be modeled. However interest rates have been negative several times in financial practice in the past. We show that applying inflated probabilities to the Black-Scholes-Merton model implies negative interest rates. Hence with this extension, Caps and Floors with negative interest rate can be conveniently modeled closed form.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Article provided by Better Advances Press, Canada in its journal Review of Economics & Finance.

    Volume (Year): 2 (2012)
    Issue (Month): (November)
    Pages: 1-13

    in new window

    Handle: RePEc:bap:journl:120401
    Contact details of provider: Postal:
    17 Alton Towers Circle, Unit 101 Toronto, ON, M1V3L8, Canada

    Phone: +1-647-728-3961
    Web page:

    Order Information: Postal: 17 Alton Towers Circle, Unit 101 Toronto, ON, M1V3L8, Canada

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    2. Venter, Gary G., 2007. "Generalized Linear Models beyond the Exponential Family with Loss Reserve Applications," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 37(02), pages 345-364, November.
    3. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    4. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:bap:journl:120401. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Carlson)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.