IDEAS home Printed from https://ideas.repec.org/a/ags/paaero/359305.html
   My bibliography  Save this article

Changes In Land Resources In European Union Member States

Author

Listed:
  • MATYKA, MARIUSZ

Abstract

Economic development, in addition to quantitative and qualitative progress, is also associated with structural changes. This particularly concerns agricultural land resources. The analysis included in the paper concerns changes in land resources in the countries that were members of the European Union in 2024. Both changes in the utilized agricultural area (UAA) and changes in the area of arable land (AL), permanent meadows and pastures, permanent crops, temporary fallow and arable land area per capita were analyzed in detail. For most indicators, the assessment was carried out for the years 1993-2022, which conditioned the availability of data. The results of the analysis included indicate a significant loss of agricultural land resources in the EU-27 countries. This process should be assessed as a major threat to the food security of the EU and individual countries. Agricultural land designated for the development of industry, communication infrastructure or housing development should be considered as irretrievably lost from an environmental point of view.

Suggested Citation

  • Matyka, Mariusz, 2025. "Changes In Land Resources In European Union Member States," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2025(1).
  • Handle: RePEc:ags:paaero:359305
    DOI: 10.22004/ag.econ.359305
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/359305/files/10%20%281%29.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.359305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wirsenius, Stefan & Azar, Christian & Berndes, Göran, 2010. "How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030?," Agricultural Systems, Elsevier, vol. 103(9), pages 621-638, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasadhika Sharma & Trung Thanh Nguyen & Ulrike Grote, 2018. "Changing Consumption Patterns—Drivers and the Environmental Impact," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    2. Jeffrey Chiwuikem Chiaka & Lin Zhen, 2021. "Land Use, Environmental, and Food Consumption Patterns in Sub-Saharan Africa, 2000–2015: A Review," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
    3. Timothy A. Wise, 2013. "Can We Feed the World in 2050? A Scoping Paper to Assess the Evidence," GDAE Working Papers 13-04, GDAE, Tufts University.
    4. Yi-Ming Wei & Rong Han & Qiao-Mei Liang & Bi-Ying Yu & Yun-Fei Yao & Mei-Mei Xue & Kun Zhang & Li-Jing Liu & Juan Peng & Pu Yang & Zhi-Fu Mi & Yun-Fei Du & Ce Wang & Jun-Jie Chang & Qian-Ru Yang & Zil, 2018. "An integrated assessment of INDCs under Shared Socioeconomic Pathways: an implementation of C3IAM," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 585-618, June.
    5. Peters, Christian J. & Picardy, Jamie A. & Darrouzet-Nardi, Amelia & Griffin, Timothy S., 2014. "Feed conversions, ration compositions, and land use efficiencies of major livestock products in U.S. agricultural systems," Agricultural Systems, Elsevier, vol. 130(C), pages 35-43.
    6. Forte, Annachiara & Zucaro, Amalia & De Vico, Gionata & Fierro, Angelo, 2016. "Carbon footprint of heliciculture: A case study from an Italian experimental farm," Agricultural Systems, Elsevier, vol. 142(C), pages 99-111.
    7. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    8. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    9. Pariz, Cristiano M. & Costa, Ciniro & Crusciol, Carlos A.C. & Castilhos, André M. & Meirelles, Paulo R.L. & Roça, Roberto O. & Pinheiro, Rafael S.B. & Kuwahara, Frank A. & Martello, Jorge M. & Cavasan, 2017. "Lamb production responses to grass grazing in a companion crop system with corn silage and oversowing of yellow oat in a tropical region," Agricultural Systems, Elsevier, vol. 151(C), pages 1-11.
    10. Weizhong Su & Gaobin Ye, 2014. "Differences of Soil Fertility in Farmland Occupation and Supplement Areas in the Taihu Lake Watershed during 1985–2010," IJERPH, MDPI, vol. 11(6), pages 1-15, May.
    11. Maria-Jose Ibarrola-Rivas & Sanderine Nonhebel, 2019. "Does Mexico Have Enough Land to Fulfill Future Needs for the Consumption of Animal Products?," Agriculture, MDPI, vol. 9(10), pages 1-21, September.
    12. Emiko Fukase & Will Martin, 2016. "Who Will Feed China in the 21st Century? Income Growth and Food Demand and Supply in China," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(1), pages 3-23, February.
    13. Stefan Wirsenius & Fredrik Hedenus & Kristina Mohlin, 2011. "Greenhouse gas taxes on animal food products: rationale, tax scheme and climate mitigation effects," Climatic Change, Springer, vol. 108(1), pages 159-184, September.
    14. Bosire, Caroline K. & Krol, Maarten S. & Mekonnen, Mesfin M. & Ogutu, Joseph O. & de Leeuw, Jan & Lannerstad, Mats & Hoekstra, Arjen Y., 2016. "Meat and milk production scenarios and the associated land footprint in Kenya," Agricultural Systems, Elsevier, vol. 145(C), pages 64-75.
    15. Vaiknoras, Kate & Kiker, Greg & Nkonya, Ephraim & Morgan, Savannah & Beckman, Jayson & Johnson, Michael E. & Ivanic, Maros, 2024. "The Effect of Climate Change on Herbaceous Biomass and Implications for Global Cattle Production," Economic Research Report 347200, United States Department of Agriculture, Economic Research Service.
    16. Minghui Xu & Yibo Luan & Zhenke Zhang & Shengnan Jiang, 2021. "Dietary pattern changes over Africa and its implication for land requirements for food," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(3), pages 1-26, March.
    17. Benjamin Leon Bodirsky & Alexander Popp & Hermann Lotze-Campen & Jan Philipp Dietrich & Susanne Rolinski & Isabelle Weindl & Christoph Schmitz & Christoph Müller & Markus Bonsch & Florian Humpenöder &, 2014. "Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    18. Odegard, I.Y.R. & van der Voet, E., 2014. "The future of food — Scenarios and the effect on natural resource use in agriculture in 2050," Ecological Economics, Elsevier, vol. 97(C), pages 51-59.
    19. Sali, Guido & Corsi, Stefano & Monaco, Federica & Mazzochi, Chiara, 2014. "The role of different typologies of urban agriculture for the nourishment of the metropolis. The case study of Milan," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 186373, European Association of Agricultural Economists.
    20. Havlik, Petr & Herrero, Mario & Mosnier, Aline & Obersteiner, Michael & Schmid, Erwin & Fuss, Sabine & Schneider, Uwe A., 2011. "Production system based global livestock sector modeling: Good news for the future," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114552, European Association of Agricultural Economists.

    More about this item

    Keywords

    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:paaero:359305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/seriaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.