IDEAS home Printed from https://ideas.repec.org/a/ags/cafric/45987.html
   My bibliography  Save this article

Effectiveness of Best Management Cropping Systems to Abate Greenhouse Gas Emissions

Author

Listed:
  • Meyer-Aurich, Andreas
  • Weersink, Alfons
  • Jayasundara, Susantha
  • Wagner-Riddle, Claudia

Abstract

Best management practices (BMPs) for cropping systems that involve conservation tillage and nutrient management are proposed as potential win-win solutions for both farmers and the environment. While originally targeted as a means for improving soil and water quality, these BMPs may also contribute to the mitigation of greenhouse gases (GHGs). Mitigation efforts have focused primarily on the ability of BMPs to sequester carbon and the subsequent potential revenue source carbon sequestration may represent to farmers. Increasingly, evidence from experimental stations calls into question the potential for C-sequestration with reduced tillage in soils in Eastern Canada. However, there are other ways in which BMPs can reduce GHG emissions: lowering fuel and nitrogen fertilizer consumption and, potentially, lowering emissions of nitrous oxide from the soil. This article examines the profitability and emission reduction potential of best management cropping practices for Ontario.

Suggested Citation

  • Meyer-Aurich, Andreas & Weersink, Alfons & Jayasundara, Susantha & Wagner-Riddle, Claudia, 2004. "Effectiveness of Best Management Cropping Systems to Abate Greenhouse Gas Emissions," CAFRI: Current Agriculture, Food and Resource Issues, Canadian Agricultural Economics Society, issue 5, pages 1-9, December.
  • Handle: RePEc:ags:cafric:45987
    DOI: 10.22004/ag.econ.45987
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/45987/files/meyer5-1_1_.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.45987?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bruce A. McCarl & Uwe A. Schneider, 2000. "U.S. Agriculture's Role in a Greenhouse Gas Emission Mitigation World: An Economic Perspective," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 22(1), pages 134-159.
    2. Weersink, Alfons & Joseph, Stanley & Kay, Beverly D. & Turvey, Calum G., 2003. "An Economic Analysis of the Potential Influence of Carbon Credits on Farm Management Practices," CAFRI: Current Agriculture, Food and Resource Issues, Canadian Agricultural Economics Society, issue 4, pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kung, Chih-Chun & Wu, Tao, 2021. "Influence of water allocation on bioenergy production under climate change: A stochastic mathematical programming approach," Energy, Elsevier, vol. 231(C).
    2. Wang, Weiwei & Khanna, Madhu & Dwivedi, Puneet, 2013. "Optimal Mix of Feedstock for Biofuels: Implications for Land Use and GHG Emissions," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150736, Agricultural and Applied Economics Association.
    3. repec:bla:afrdev:v:29:y:2017:i:s2:p:163-178 is not listed on IDEAS
    4. Min Su & Rui Jiang & Rongrong Li, 2017. "Investigating Low-Carbon Agriculture: Case Study of China’s Henan Province," Sustainability, MDPI, vol. 9(12), pages 1-14, December.
    5. Kung, Chih-Chun & Cao, Xiaoyong & Choi, Yongrok & Kung, Shan-Shan, 2019. "A stochastic analysis of cropland utilization and resource allocation under climate change," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    6. Heng-Chi Lee & Bruce McCarl & Uwe Schneider & Chi-Chung Chen, 2007. "Leakage and Comparative Advantage Implications of Agricultural Participation in Greenhouse Gas Emission Mitigation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(4), pages 471-494, May.
    7. Chin-Hsien Yu & Bruce A. McCarl, 2018. "The Water Implications of Greenhouse Gas Mitigation: Effects on Land Use, Land Use Change, and Forestry," Sustainability, MDPI, vol. 10(7), pages 1-22, July.
    8. Donaghy, Peter & Rolfe, John & Gowen, Rebecca & Bray, Steven & Madonna, Hoffman, 2010. "Assessing the economic impact of an emissions trading scheme on agroforestry in Australia’s northern grazing systems," 2010 Conference (54th), February 10-12, 2010, Adelaide, Australia 59069, Australian Agricultural and Resource Economics Society.
    9. Meyer-Aurich, A. & Gandorfer, M. & Gerlund, G. & Kainz, M., 2009. "Ökonomische Analyse reduzierter Bodenbearbeitung in Abhängigkeit von der Stickstoffdüngung unter besonderer Berücksichtigung des Produktionsrisikos," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 44, March.
    10. Dumbrell, Nikki P. & Kragt, Marit E. & Biggs, Jody & Meier, Elizabeth & Thorburn, Peter, 2015. "Climate change abatement and farm profitability analyses across agricultural environments," Working Papers 225674, University of Western Australia, School of Agricultural and Resource Economics.
    11. Kung, Chih-Chun & Zhang, Liguo & Kong, Fanbin, 2016. "How government subsidy leads to sustainable bioenergy development," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 275-284.
    12. Chih-Chun Kung & Tao Wu, 2020. "A spatial equilibrium analysis of using agricultural resources to produce biofuel," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 66(2), pages 74-83.
    13. Gren, Ing-Marie & Zeleke, Abenezer Aklilu, 2016. "Policy design for forest carbon sequestration: A review of the literature," Forest Policy and Economics, Elsevier, vol. 70(C), pages 128-136.
    14. Ying Liu & Haiying Tang & Aamer Muhammad & Guoqin Huang, 2019. "Emission mechanism and reduction countermeasures of agricultural greenhouse gases – a review," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(2), pages 160-174, April.
    15. Kung, Chih-Chun, 2019. "A stochastic evaluation of economic and environmental effects of Taiwan's biofuel development under climate change," Energy, Elsevier, vol. 167(C), pages 1051-1064.
    16. Vassilis Lychnaras & Uwe A. Schneider, 2007. "Dynamic Economic Analysis of Perennial Energy Crops - EffectS of The CAP Reform on Biomass Supply in Greece," Working Papers FNU-132, Research unit Sustainability and Global Change, Hamburg University, revised Apr 2007.
    17. Meng-Shiuh Chang & Chih-Chun Kung, 2018. "The greenhouse gas impact of bioenergy in developing economies: Evidence from Taiwan," Energy & Environment, , vol. 29(3), pages 315-332, May.
    18. Rosa, Franco, 2008. "The LP Model to Optimize the Biofuel Supply Chain," 110th Seminar, February 18-22, 2008, Innsbruck-Igls, Austria 49889, European Association of Agricultural Economists.
    19. Meng-Shiuh CHANG & Wen WANG & Chih-Chun KUNG, 2015. "Economic effects of the biochar application on rice supply in Taiwan," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 61(6), pages 284-295.
    20. Qinyi Huang & Yu Zhang, 2021. "Decoupling and Decomposition Analysis of Agricultural Carbon Emissions: Evidence from Heilongjiang Province, China," IJERPH, MDPI, vol. 19(1), pages 1-16, December.
    21. Lutsey, Nicholas P., 2008. "Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors," Institute of Transportation Studies, Working Paper Series qt5rd41433, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:cafric:45987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/caefmea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.