IDEAS home Printed from https://ideas.repec.org/a/ags/apstra/138133.html
   My bibliography  Save this article

Water Footprint In Hungary

Author

Listed:
  • Neubauer, Eva

Abstract

More and more news report on water-related extreme environmental phenomena. Some of these are natural, which are often beyond the human race. But others are definitely due to anthropogenic effects. I think the water footprint index is able to highlight national and international water-use processes and gives us the opportunity of organizing a sustainable, consumer-, environmental- and governancefriendly management. 81% of the fresh water withdrawal is from surface water bodies in the EU. In Europe as a whole, 44% of abstraction is used for energy production, 24% for agriculture, 21% for public water supply and 11% for industry. Public water supply is confined to ground waters. To the water resources related human activity caused qualitative and quantitative amortisation will grow worse in the foreseeable future due to the climate change. Beside seasonal differences the sectoral differences are increasingly becoming critical between different areas, such as Southern and Western Europe. The former, wrong agricultural support system has worsened the situation since it gave financial aid for the used improper techniques of water-intensive crop cultivation. By today, this seems to be solved. Public water abstraction is affected by many factors, of which mostly are based on social situation and habits, but technological leakage receives a big role as well. Interesting, that for example the residents’water consumption in Eastern Europe decreased because price were raised and regular measurements were introduced. But in Southern Europe it increased due to tourism in the past period. Industrial water withdrawal decreased across Europe because of the decline of industry and the development of technologies. According to the European Environment Agency (EEA), the Union needs a sustainable, demand-driven leadership which focuses on the preservation and use efficiency. This have already appeared in politics and legal administration as well. Current research calls the attention to the significance and difficulties of this kind of domestic estimation presented trough the water footprint calculation of bread and pork in Hungary. The received data indicate the domestic water consumption trends in a modern approach. There is no doubt for me about the urgent necessity of water footprint calculation because as a result innovative, sustainability supported environmental, social, economical, and political relationships can be created – not just on local, regional or national level, but on interregional, European and even global stage.

Suggested Citation

  • Neubauer, Eva, 2012. "Water Footprint In Hungary," APSTRACT: Applied Studies in Agribusiness and Commerce, AGRIMBA, vol. 6(3-4), pages 1-10, November.
  • Handle: RePEc:ags:apstra:138133
    DOI: 10.22004/ag.econ.138133
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/138133/files/11WATER%20FOOTPRINT.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.138133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Hoekstra & A. Chapagain, 2007. "Water footprints of nations: Water use by people as a function of their consumption pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 35-48, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    2. Hess, Tim & Andersson, Ulrika & Mena, Carlos & Williams, Adrian, 2015. "The impact of healthier dietary scenarios on the global blue water scarcity footprint of food consumption in the UK," Food Policy, Elsevier, vol. 50(C), pages 1-10.
    3. Lucia Mancini, 2013. "Conventional, Organic and Polycultural Farming Practices: Material Intensity of Italian Crops and Foodstuffs," Resources, MDPI, vol. 2(4), pages 1-23, December.
    4. Tsoutsos, Theocharis & Chatzakis, Michael & Sarantopoulos, Ioannis & Nikologiannis, Athanasios & Pasadakis, Nikos, 2013. "Effect of wastewater irrigation on biodiesel quality and productivity from castor and sunflower oil seeds," Renewable Energy, Elsevier, vol. 57(C), pages 211-215.
    5. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    6. Han-Shen Chen, 2015. "Using Water Footprints for Examining the Sustainable Development of Science Parks," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    7. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    8. Maaike Bouwmeester & Jan Oosterhaven, 2013. "Specification and Aggregation Errors in Environmentally Extended Input–Output Models," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 307-335, November.
    9. Gössling, Stefan & Garrod, Brian & Aall, Carlo & Hille, John & Peeters, Paul, 2011. "Food management in tourism: Reducing tourism’s carbon ‘foodprint’," Tourism Management, Elsevier, vol. 32(3), pages 534-543.
    10. Liqiang Ge & Gaodi Xie & Caixia Zhang & Shimei Li & Yue Qi & Shuyan Cao & Tingting He, 2011. "An Evaluation of China’s Water Footprint," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2633-2647, August.
    11. Kaltenegger, Oliver & Löschel, Andreas & Pothen, Frank, 2017. "The effect of globalisation on energy footprints: Disentangling the links of global value chains," Energy Economics, Elsevier, vol. 68(S1), pages 148-168.
    12. Vasanthakumar Bhat, 2015. "Water and Its Effect on Business Productivity: A Cross-Country Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4007-4020, September.
    13. Babel, M.S. & Shrestha, B. & Perret, S.R., 2011. "Hydrological impact of biofuel production: A case study of the Khlong Phlo Watershed in Thailand," Agricultural Water Management, Elsevier, vol. 101(1), pages 8-26.
    14. Hachaichi, Mohamed, 2023. "Unpacking the urban virtual water of the Global South: Lessons from 181 cities," Ecological Economics, Elsevier, vol. 210(C).
    15. Zhang, Chao & Anadon, Laura Diaz, 2014. "A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China," Ecological Economics, Elsevier, vol. 100(C), pages 159-172.
    16. Mariana Lares-Michel & Fatima Ezzahra Housni & Virginia Gabriela Aguilera Cervantes, 2021. "A quantitative estimation of the water footprint of the Mexican diet, corrected for washing and cooking water," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(4), pages 849-874, August.
    17. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    18. Ward, Frank A., 2023. "Innovations for the Water Resource Economics Curriculum: Training the Next Generation," Applied Economics Teaching Resources (AETR), Agricultural and Applied Economics Association, vol. 5(2), April.
    19. Aldaya, M.M. & Allan, J.A. & Hoekstra, A.Y., 2010. "Strategic importance of green water in international crop trade," Ecological Economics, Elsevier, vol. 69(4), pages 887-894, February.
    20. Esther Velázquez & Cristina Madrid & María Beltrán, 2011. "Rethinking the Concepts of Virtual Water and Water Footprint in Relation to the Production–Consumption Binomial and the Water–Energy Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 743-761, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:apstra:138133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://www.apstract.net/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.