IDEAS home Printed from https://ideas.repec.org/a/aes/infoec/v16y2012i3p19-26.html
   My bibliography  Save this article

Exact Fill Rates for the (R, S) Inventory Control with Discrete Distributed Demands for the Backordering Case

Author

Listed:
  • Eugenia BABILONI
  • Ester GUIJARRO
  • Manuel CARDÓS
  • Sofía ESTELLÉS

Abstract

The fill rate is usually computed by using the traditional approach, which calculates it as the complement of the quotient between the expected unfulfilled demand and the expected demand per replenishment cycle, instead of directly the expected fraction of fulfilled demand. Furthermore the available methods to estimate the fill rate apply only under specific demand conditions. This paper shows the research gap regarding the estimation procedures to compute the fill rate and suggests: (i) a new exact procedure to compute the traditional approximation for any discrete demand distribution; and (ii) a new method to compute the fill rate directly as the fraction of fulfilled demand for any discrete demand distribution. Simulation results show that the latter methods outperform the traditional approach, which underestimates the simulated fill rate, over different demand patterns. This paper focuses on the traditional periodic review, base stock system when backlogged demands are allowed.

Suggested Citation

  • Eugenia BABILONI & Ester GUIJARRO & Manuel CARDÓS & Sofía ESTELLÉS, 2012. "Exact Fill Rates for the (R, S) Inventory Control with Discrete Distributed Demands for the Backordering Case," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 16(3), pages 19-26.
  • Handle: RePEc:aes:infoec:v:16:y:2012:i:3:p:19-26
    as

    Download full text from publisher

    File URL: http://www.revistaie.ase.ro/content/63/02%20-%20Babiloni.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van der Heijden, Matthieu, 2000. "Near cost-optimal inventory control policies for divergent networks under fill rate constraints," International Journal of Production Economics, Elsevier, vol. 63(2), pages 161-179, January.
    2. Edward A. Silver, 1981. "Operations Research in Inventory Management: A Review and Critique," Operations Research, INFORMS, vol. 29(4), pages 628-645, August.
    3. Tempelmeier, Horst, 2007. "On the stochastic uncapacitated dynamic single-item lotsizing problem with service level constraints," European Journal of Operational Research, Elsevier, vol. 181(1), pages 184-194, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noordhoek, Marije & Dullaert, Wout & Lai, David S.W. & de Leeuw, Sander, 2018. "A simulation–optimization approach for a service-constrained multi-echelon distribution network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 292-311.
    2. Mahmut Parlar & David Perry, 1996. "Inventory models of future supply uncertainty with single and multiple suppliers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(2), pages 191-210, March.
    3. Özen, Ulaş & Doğru, Mustafa K. & Armagan Tarim, S., 2012. "Static-dynamic uncertainty strategy for a single-item stochastic inventory control problem," Omega, Elsevier, vol. 40(3), pages 348-357.
    4. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    5. Kilic, Onur A. & Tunc, Huseyin & Tarim, S. Armagan, 2018. "Heuristic policies for the stochastic economic lot sizing problem with remanufacturing under service level constraints," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1102-1109.
    6. Visentin, Andrea & Prestwich, Steven & Rossi, Roberto & Tarim, S. Armagan, 2021. "Computing optimal (R,s,S) policy parameters by a hybrid of branch-and-bound and stochastic dynamic programming," European Journal of Operational Research, Elsevier, vol. 294(1), pages 91-99.
    7. Gurkan, M. Edib & Tunc, Huseyin & Tarim, S. Armagan, 2022. "The joint stochastic lot sizing and pricing problem," Omega, Elsevier, vol. 108(C).
    8. Sereshti, Narges & Adulyasak, Yossiri & Jans, Raf, 2021. "The value of aggregate service levels in stochastic lot sizing problems," Omega, Elsevier, vol. 102(C).
    9. Kumar, Anupam & Evers, Philip T., 2015. "Setting safety stock based on imprecise records," International Journal of Production Economics, Elsevier, vol. 169(C), pages 68-75.
    10. Xiaoling Zhang & Ke Zhang & Shibo Li & Damien Koenitz, 2023. "Effects of store fixture shape at retail checkout: Evidence from field and online studies," Production and Operations Management, Production and Operations Management Society, vol. 32(10), pages 3158-3173, October.
    11. Céline Gicquel & Jianqiang Cheng, 2018. "A joint chance-constrained programming approach for the single-item capacitated lot-sizing problem with stochastic demand," Annals of Operations Research, Springer, vol. 264(1), pages 123-155, May.
    12. Heiner Ackermann & Erik Diessel & Michael Helmling & Neil Jami & Johanna Münch, 2024. "Computing Optimal Mitigation Plans for Force-Majeure Scenarios in Dynamic Manufacturing Chains," SN Operations Research Forum, Springer, vol. 5(2), pages 1-35, June.
    13. Hadar Amrani & Eugene Khmelnitsky, 2017. "Optimal division of inventory between depot and bases," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(1), pages 3-18, February.
    14. Daniela Favaretto & Alessandro Marin & Marco Tolotti, 2023. "A theoretical validation of the DDMRP reorder policy," Computational Management Science, Springer, vol. 20(1), pages 1-28, December.
    15. Dana Marsetiya Utama & Fakhrina Fahma Abdullah & Ikhlasul Amallynda & Teguh Baroto, 2024. "Integrated production-inventory model for multi-item raw materials with exponential quality degradation: a real case study," OPSEARCH, Springer;Operational Research Society of India, vol. 61(4), pages 1862-1887, December.
    16. P K Tripathy & W-M Wee & P R Majhi, 2003. "An EOQ model with process reliability considerations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(5), pages 549-554, May.
    17. Parlar, Mahmut & Perry, David, 1995. "Analysis of a (Q, r, T) inventory policy with deterministic and random yields when future supply is uncertain," European Journal of Operational Research, Elsevier, vol. 84(2), pages 431-443, July.
    18. Carlos Cuartas & Jose Aguilar, 2023. "Hybrid algorithm based on reinforcement learning for smart inventory management," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 123-149, January.
    19. Monthatipkul, Chumpol & Yenradee, Pisal, 2008. "Inventory/distribution control system in a one-warehouse/multi-retailer supply chain," International Journal of Production Economics, Elsevier, vol. 114(1), pages 119-133, July.
    20. Rossi, Roberto & Tarim, S. Armagan & Hnich, Brahim & Prestwich, Steven, 2010. "Computing the non-stationary replenishment cycle inventory policy under stochastic supplier lead-times," International Journal of Production Economics, Elsevier, vol. 127(1), pages 180-189, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aes:infoec:v:16:y:2012:i:3:p:19-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Paul Pocatilu (email available below). General contact details of provider: https://edirc.repec.org/data/aseeero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.