IDEAS home Printed from https://ideas.repec.org/a/aes/dbjour/v7y2016i1p12-21.html
   My bibliography  Save this article

A Stock Market Prediction Method Based on Support Vector Machines (SVM) and Independent Component Analysis (ICA)

Author

Listed:
  • Hakob GRIGORYAN

    (University of Economic Studies, Bucharest, Romania)

Abstract

The research presented in this work focuses on financial time series prediction problem. The integrated prediction model based on support vector machines (SVM) with independent component analysis (ICA) (called SVM-ICA) is proposed for stock market prediction. The presented approach first uses ICA technique to extract important features from the research data, and then applies SVM technique to perform time series prediction. The results obtained from the SVM-ICA technique are compared with the results of SVM-based model without using any pre-processing step. In order to show the effectiveness of the proposed methodology, two different research data are used as illustrative examples. In experiments, the root mean square error (RMSE) measure is used to evaluate the performance of proposed models. The comparative analysis leads to the conclusion that the proposed SVM-ICA model outperforms the simple SVM-based model in forecasting task of nonstationary time series.

Suggested Citation

  • Hakob GRIGORYAN, 2016. "A Stock Market Prediction Method Based on Support Vector Machines (SVM) and Independent Component Analysis (ICA)," Database Systems Journal, Academy of Economic Studies - Bucharest, Romania, vol. 7(1), pages 12-21, August.
  • Handle: RePEc:aes:dbjour:v:7:y:2016:i:1:p:12-21
    as

    Download full text from publisher

    File URL: http://www.dbjournal.ro/archive/23/23_2.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tim Hill & Marcus O'Connor & William Remus, 1996. "Neural Network Models for Time Series Forecasts," Management Science, INFORMS, vol. 42(7), pages 1082-1092, July.
    2. Catalina Lucia COCIANU & Hakob GRIGORYAN, 2015. "An Artificial Neural Network for Data Forecasting Purposes," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 19(2), pages 34-45.
    3. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhruhi Sheth & Manan Shah, 2023. "Predicting stock market using machine learning: best and accurate way to know future stock prices," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 1-18, February.
    2. Shuheng Wang & Guohao Li & Yifan Bao, 2018. "A novel improved fuzzy support vector machine based stock price trend forecast model," Papers 1801.00681, arXiv.org.
    3. Liu, Keyan & Zhou, Jianan & Dong, Dayong, 2021. "Improving stock price prediction using the long short-term memory model combined with online social networks," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    4. Jiahao Chen & Xiaofei Li & Junjie Du, 2025. "Analysis of Frequent Trading Effects of Various Machine Learning Models," Computational Economics, Springer;Society for Computational Economics, vol. 65(3), pages 1707-1740, March.
    5. Hüseyin İlker Erçen & Hüseyin Özdeşer & Turgut Türsoy, 2022. "The Impact of Macroeconomic Sustainability on Exchange Rate: Hybrid Machine-Learning Approach," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    6. Akshit Kurani & Pavan Doshi & Aarya Vakharia & Manan Shah, 2023. "A Comprehensive Comparative Study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock Forecasting," Annals of Data Science, Springer, vol. 10(1), pages 183-208, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrey Zahariev & Mikhail Zveryаkov & Stoyan Prodanov & Galina Zaharieva & Petko Angelov & Silvia Zarkova & Mariana Petrova, 2020. "Debt management evaluation through Support Vector Machines: on the example of Italy and Greece," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(3), pages 2382-2393, March.
    2. Jichang Dong & Wei Dai & Ying Liu & Lean Yu & Jie Wang, 2019. "Forecasting Chinese Stock Market Prices using Baidu Search Index with a Learning-Based Data Collection Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1605-1629, September.
    3. Fang Yuan & Jiang Guo & Zhihuai Xiao & Bing Zeng & Wenqiang Zhu & Sixu Huang, 2020. "An Interval Forecasting Model Based on Phase Space Reconstruction and Weighted Least Squares Support Vector Machine for Time Series of Dissolved Gas Content in Transformer Oil," Energies, MDPI, vol. 13(7), pages 1-28, April.
    4. Ślepaczuk Robert & Zenkova Maryna, 2018. "Robustness of Support Vector Machines in Algorithmic Trading on Cryptocurrency Market," Central European Economic Journal, Sciendo, vol. 5(52), pages 186-205, January.
    5. Jannik Schütz Roungkvist & Peter Enevoldsen & George Xydis, 2020. "High-Resolution Electricity Spot Price Forecast for the Danish Power Market," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    6. Harris, Richard D.F. & Mazibas, Murat & Rambaccussing, Dooruj, 2024. "Bitcoin replication using machine learning," International Review of Financial Analysis, Elsevier, vol. 93(C).
    7. T. Law & J. Shawe-Taylor, 2017. "Practical Bayesian support vector regression for financial time series prediction and market condition change detection," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1403-1416, September.
    8. Leigh, W. & Paz, M. & Purvis, R., 2002. "An analysis of a hybrid neural network and pattern recognition technique for predicting short-term increases in the NYSE composite index," Omega, Elsevier, vol. 30(2), pages 69-76, April.
    9. Yanshan Wang, 2013. "Stock price direction prediction by directly using prices data: an empirical study on the KOSPI and HSI," Papers 1309.7119, arXiv.org, revised Jan 2017.
    10. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2020. "Machine learning with parallel neural networks for analyzing and forecasting electricity demand," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 569-597, August.
    11. Amir Safari, 2014. "An e–E-insensitive support vector regression machine," Computational Statistics, Springer, vol. 29(6), pages 1447-1468, December.
    12. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    13. Flavio Barboza & Geraldo Nunes Silva & José Augusto Fiorucci, 2023. "A review of artificial intelligence quality in forecasting asset prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1708-1728, November.
    14. Zoran Vojinovic & Vojislav Kecman & Rainer Seidel, 2001. "A data mining approach to financial time series modelling and forecasting," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 10(4), pages 225-239, December.
    15. Wong, Wai-Tak & Hsu, Sheng-Hsun, 2006. "Application of SVM and ANN for image retrieval," European Journal of Operational Research, Elsevier, vol. 173(3), pages 938-950, September.
    16. Wang, Chao & Lim, Ming K & Zhao, Longfeng & Tseng, Ming-Lang & Chien, Chen-Fu & Lev, Benjamin, 2020. "The evolution of Omega-The International Journal of Management Science over the past 40 years: A bibliometric overview," Omega, Elsevier, vol. 93(C).
    17. Monira Essa Aloud, 2020. "The role of attribute selection in Deep ANNs learning framework for high‐frequency financial trading," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(2), pages 43-54, April.
    18. Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011. "Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange," International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816, July.
    19. Helder Sebastião & Pedro Godinho & Sjur Westgaard, 2020. "Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures," Scientific Annals of Economics and Business (continues Analele Stiintifice), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 67(4), pages 1-17, December.
    20. Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023. "A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aes:dbjour:v:7:y:2016:i:1:p:12-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adela Bara (email available below). General contact details of provider: https://edirc.repec.org/data/aseeero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.