IDEAS home Printed from https://ideas.repec.org/r/ags/aare09/47636.html
   My bibliography  Save this item

Measurement Of Agricultural Total Factor Productivity Growth Incorporating Environmental Factors: A Nutrients Balance Approach

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Xinhai Lu & Zhoumi Li & Hongzheng Wang & Yifeng Tang & Bixia Hu & Mingyue Gong & Yulong Li, 2022. "Evaluating Impact of Farmland Recessive Morphology Transition on High-Quality Agricultural Development in China," Land, MDPI, vol. 11(3), pages 1-19, March.
  2. Kenneth Løvold Rødseth, 2017. "Axioms of a Polluting Technology: A Materials Balance Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(1), pages 1-22, May.
  3. Zhou, P. & Delmas, M.A. & Kohli, A., 2017. "Constructing meaningful environmental indices: A nonparametric frontier approach," Journal of Environmental Economics and Management, Elsevier, vol. 85(C), pages 21-34.
  4. Daniel Gaitán-Cremaschi & Frits K. Van Evert & Don M. Jansen & Miranda P. M. Meuwissen & Alfons G. J. M. Oude Lansink, 2018. "Assessing the Sustainability Performance of Coffee Farms in Vietnam: A Social Profit Inefficiency Approach," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
  5. Arnaud Abad & Paola Ravelojaona, 2020. "A Generalization of Environmental Productivity Analysis," Working Papers hal-02964799, HAL.
  6. Boon Liat Lee & Clevo Wilson & Carl A. Pasurka & Hidemichi Fujii & Shunsuke Managi, 2017. "Sources of airline productivity from carbon emissions: an analysis of operational performance under good and bad outputs," Journal of Productivity Analysis, Springer, vol. 47(3), pages 223-246, June.
  7. Shen, Zhiyang & Boussemart, Jean-Philippe & Leleu, Hervé, 2017. "Aggregate green productivity growth in OECD’s countries," International Journal of Production Economics, Elsevier, vol. 189(C), pages 30-39.
  8. Andreas Eder, 2022. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Journal of Productivity Analysis, Springer, vol. 57(2), pages 157-176, April.
  9. Viet-Ngu Hoang & Mohammad Alauddin, 2009. "A new framework of measuring national nutrients balance for international and global comparison," Discussion Papers Series 389, School of Economics, University of Queensland, Australia.
  10. Zuniga Gonzalez, Carlos Alberto, 2012. "Total factor productivity and Bio Economy effects," MPRA Paper 49355, University Library of Munich, Germany, revised 13 Nov 2012.
  11. repec:zbw:inwedp:752021 is not listed on IDEAS
  12. Ang, Frederic & Dakpo, Hervé, 2018. "Sustainable Intensification in agriculture? A global assessment," 166th Seminar, August 30-31, 2018, Galway, West of Ireland 276190, European Association of Agricultural Economists.
  13. Fang, Lei, 2020. "Opening the “black box” of environmental production technology in a nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 286(2), pages 769-780.
  14. Li, Ye & Cui, Qiang, 2017. "Carbon neutral growth from 2020 strategy and airline environmental inefficiency: A Network Range Adjusted Environmental Data Envelopment Analysis," Applied Energy, Elsevier, vol. 199(C), pages 13-24.
  15. Yang, Fuxia & Yang, Mian & Nie, Hualin, 2013. "Productivity trends of Chinese regions: A perspective from energy saving and environmental regulations," Applied Energy, Elsevier, vol. 110(C), pages 82-89.
  16. Aldanondo-Ochoa, Ana M. & Casasnovas-Oliva, Valero L. & Almansa-Sáez, M. Carmen, 2017. "Cross-constrained Measuring the Cost-environment Efficiency in Material Balance Based Frontier Models," Ecological Economics, Elsevier, vol. 142(C), pages 46-55.
  17. Amer Ait Sidhoum, 2023. "Assessing the contribution of farmers’ working conditions to productive efficiency in the presence of uncertainty, a nonparametric approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8601-8622, August.
  18. Ma, Chunbo & Hailu, Atakelty & You, Chaoying, 2019. "A critical review of distance function based economic research on China’s marginal abatement cost of carbon dioxide emissions," Energy Economics, Elsevier, vol. 84(C).
  19. Hoang, Viet-Ngu & Nguyen, Trung Thanh, 2013. "Analysis of environmental efficiency variations: A nutrient balance approach," Ecological Economics, Elsevier, vol. 86(C), pages 37-46.
  20. Dakpo, K Hervé, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers 245191, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
  21. Truc Linh Le & Pai-Po Lee & Ke Chung Peng & Rebecca H. Chung, 2019. "Evaluation of total factor productivity and environmental efficiency of agriculture in nine East Asian countries," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 65(6), pages 249-258.
  22. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
  23. Andreas Eder, 2021. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Working Papers 752021, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
  24. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2015. "Carbon dioxide emission standards for U.S. power plants: An efficiency analysis perspective," Energy Economics, Elsevier, vol. 50(C), pages 140-153.
  25. Arnaud Abad & Paola Ravelojaona, 2022. "A generalization of environmental productivity analysis," Post-Print hal-03592375, HAL.
  26. Hoang, Viet-Ngu & Alauddin, Mohammad, 2009. "Analysis of Agricultural Sustainability: A Review of Exergy Methodologies and Their Application in OECD," MPRA Paper 90406, University Library of Munich, Germany, revised 15 Mar 2010.
  27. K Hervé Dakpo, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers SMART 16-06, INRAE UMR SMART.
  28. Victor MOUTINHO & Margarita ROBAINA & Pedro MACEDO, 2018. "Economic-environmental efficiency of European agriculture - a generalized maximum entropy approach," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(10), pages 423-435.
  29. K Hervé Dakpo & Philippe Jeanneaux & Laure Latruffe, 2014. "Inclusion of undesirable outputs in production technology modeling:The case of greenhouse gas emissions in French meat sheep farming," Working Papers SMART 14-08, INRAE UMR SMART.
  30. Cui, Qiang & Li, Ye & Wei, Yi-Ming, 2017. "Exploring the impacts of EU ETS on the pollution abatement costs of European airlines: An application of Network Environmental Production Function," Transport Policy, Elsevier, vol. 60(C), pages 131-142.
  31. Cui, Qiang, 2019. "Investigating the airlines emission reduction through carbon trading under CNG2020 strategy via a Network Weak Disposability DEA," Energy, Elsevier, vol. 180(C), pages 763-771.
  32. Lee, Chia-Yen, 2018. "Mixed-strategy Nash equilibrium in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1013-1024.
  33. Viet-Ngu Hoang, 2011. "Analysis of Productive Performance of Crop and Animal Production Systems: An Integrated Analytical Framework," School of Economics and Finance Discussion Papers and Working Papers Series 268, School of Economics and Finance, Queensland University of Technology.
  34. Eder, Andreas, 2021. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Discussion Papers DP-75-2021, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
  35. Kassoum Ayouba & Jean-Philippe Boussemart & Raluca Parvulescu, 2023. "Measuring CO2 emission reduction potential using a cost approach," Working Papers 2023-EQM-02, IESEG School of Management.
  36. Shiwei LIU & Pingyu ZHANG & Xiuli HE & Jing LI, 2015. "Efficiency change in North-East China agricultural sector: A DEA approach," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 61(11), pages 522-532.
  37. Ning Xu & Desen Zhao & Wenjie Zhang & Ming Liu & He Zhang, 2022. "Does Digital Transformation Promote Agricultural Carbon Productivity in China?," Land, MDPI, vol. 11(11), pages 1-19, November.
  38. Kuosmanen, Natalia & Kuosmanen, Timo, 2013. "Modeling Cumulative Effects of Nutrient Surpluses in Agriculture: A Dynamic Approach to Material Balance Accounting," Ecological Economics, Elsevier, vol. 90(C), pages 159-167.
  39. Cui, Qiang & Wei, Yi-Ming & Li, Ye, 2016. "Exploring the impacts of the EU ETS emission limits on airline performance via the Dynamic Environmental DEA approach," Applied Energy, Elsevier, vol. 183(C), pages 984-994.
  40. Caifeng Tan & Jianping Tao & Lan Yi & Juan He & Qi Huang, 2022. "Dynamic Relationship between Agricultural Technology Progress, Agricultural Insurance and Farmers’ Income," Agriculture, MDPI, vol. 12(9), pages 1-17, August.
  41. Aldanondo, Ana M. & Casasnovas, Valero L. & Almansa, M. Carmen, 2016. "Cost-constrained measures of environmental efficiency: a material balance approach," MPRA Paper 72490, University Library of Munich, Germany.
  42. Frederic Ang & Pieter Jan Kerstens, 2023. "Robust nonparametric analysis of dynamic profits, prices and productivity: An application to French meat-processing firms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(2), pages 771-809.
  43. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
  44. Wu, F. & Zhou, P. & Zhou, D.Q., 2020. "Modeling carbon emission performance under a new joint production technology with energy input," Energy Economics, Elsevier, vol. 92(C).
  45. Ma-Lin Song & Yuan-Xiang Zhou & Rong-Rong Zhang & Ron Fisher, 2017. "Environmental efficiency evaluation with left–right fuzzy numbers," Operational Research, Springer, vol. 17(3), pages 697-714, October.
  46. Hoang, Viet-Ngu, 2011. "Measuring and decomposing changes in agricultural productivity, nitrogen use efficiency and cumulative exergy efficiency: Application to OECD agriculture," Ecological Modelling, Elsevier, vol. 222(1), pages 164-175.
  47. Wettemann, Patrick, 2015. "Die Entwicklung der Produktivität von Marktfruchtbetrieben unter Berücksichtigung von Treibhausgasemissionen," 55th Annual Conference, Giessen, Germany, September 23-25, 2015 209213, German Association of Agricultural Economists (GEWISOLA).
  48. Effendy & M Fardhal Pratama & Rustam Abdul Rauf & Made Antara & Muhammad Basir-Cyio & Mahfudz & Muhardi, 2019. "Factors influencing the efficiency of cocoa farms: A study to increase income in rural Indonesia," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-15, April.
  49. Ke Wang & Yi-Ming Wei & Zhimin Huang, 2017. "Environmental efficiency and abatement efficiency measurements of China¡¯s thermal power industry: A data envelopment analysis based materials balance approach," CEEP-BIT Working Papers 108, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  50. Viet-Ngu Hoang & Mohammad Alauddin, 2009. "Assessing eco-environmental performance of agricultural production in OECD countries: combination of soil surface, soil system and farm gate methods of nutrient auditing," Discussion Papers Series 399, School of Economics, University of Queensland, Australia.
  51. Fusco, Elisa & Vidoli, Francesco & Rogge, Nicky, 2020. "Spatial directional robust Benefit of the Doubt approach in presence of undesirable output: An application to Italian waste sector," Omega, Elsevier, vol. 94(C).
  52. Joanna Domagała, 2021. "Economic and Environmental Aspects of Agriculture in the EU Countries," Energies, MDPI, vol. 14(22), pages 1-23, November.
  53. Chuku, Chuku, 2015. "Incorporating Environmental Externalities in Total Factor Productivity Analysis: The Case of Soil Erosion in Nigerian Agriculture," MPRA Paper 68165, University Library of Munich, Germany.
  54. Viet-Ngu Hoang & Mohammad Alauddin, 2012. "Input-Orientated Data Envelopment Analysis Framework for Measuring and Decomposing Economic, Environmental and Ecological Efficiency: An Application to OECD Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(3), pages 431-452, March.
  55. Hampf, Benjamin, 2015. "Estimating the materials balance condition: A stochastic frontier approach," Darmstadt Discussion Papers in Economics 226, Darmstadt University of Technology, Department of Law and Economics.
  56. Annageldy Arazmuradov, 2016. "Economic prospect on carbon emissions in Commonwealth of Independent States," Economic Change and Restructuring, Springer, vol. 49(4), pages 395-427, November.
  57. Huang, Wei & Bruemmer, Bernhard & Huntsinger, Lynn, 2016. "Incorporating measures of grassland productivity into efficiency estimates for livestock grazing on the Qinghai-Tibetan Plateau in China," Ecological Economics, Elsevier, vol. 122(C), pages 1-11.
  58. Alfons Oude Lansink & Alan Wall, 2014. "Frontier models for evaluating environmental efficiency: an overview," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 43-50.
  59. George E. Halkos & Shunsuke Managi, 2017. "Measuring the Effect of Economic Growth on Countries’ Environmental Efficiency: A Conditional Directional Distance Function Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 753-775, November.
  60. Nguyen Thuy Trang & Vo Hong Tu & Le Thanh Son & Nguyen Phu Son, 2023. "Is super-intensive shrimp farming more environmentally friendly? an application of material balance principle in the Mekong Delta," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2670-2687, March.
  61. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
  62. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures under CNG2020 strategy: An application of a Dynamic By-production model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 130-143.
  63. Du, Kerui & Lu, Huang & Yu, Kun, 2014. "Sources of the potential CO2 emission reduction in China: A nonparametric metafrontier approach," Applied Energy, Elsevier, vol. 115(C), pages 491-501.
  64. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2014. "Carbon dioxide emission standards for US power plants: An efficiency analysis perspective," Darmstadt Discussion Papers in Economics 219, Darmstadt University of Technology, Department of Law and Economics.
  65. Cui, Qiang & Li, Ye, 2018. "Airline dynamic efficiency measures with a Dynamic RAM with unified natural & managerial disposability," Energy Economics, Elsevier, vol. 75(C), pages 534-546.
  66. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2019. "Environmental efficiency measurement with heterogeneous input quality: A nonparametric analysis of U.S. power plants," Energy Economics, Elsevier, vol. 81(C), pages 610-625.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.