IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i1p164-175.html
   My bibliography  Save this article

Measuring and decomposing changes in agricultural productivity, nitrogen use efficiency and cumulative exergy efficiency: Application to OECD agriculture

Author

Listed:
  • Hoang, Viet-Ngu

Abstract

This paper uses an aggregate quantity space to decompose the temporal changes in nitrogen use efficiency and cumulative exergy use efficiency into changes of Moorsteen–Bjurek (MB) Total Factor Productivity (TFP) changes and changes in the aggregate nitrogen and cumulative exergy contents. Changes in productivity can be broken into technical change and changes in various efficiency measures such as technical efficiency, scale efficiency and residual mix efficiency. Changes in the aggregate nitrogen and cumulative exergy contents can be driven by changes in the quality of inputs and outputs and changes in the mixes of inputs and outputs. Also with cumulative exergy content analysis, changes in the efficiency in input production can increase or decrease the cumulative exergy transformity of agricultural production. The empirical study in 30 member countries of the Organisation for Economic Co-operation Development from 1990 to 2003 yielded some important findings. The production technology progressed but there were reductions in technical efficiency, scale efficiency and residual mix efficiency levels. This result suggests that the production frontier had shifted up but there existed lags in the responses of member countries to the technological change. Given TFP growth, improvements in nutrient use efficiency and cumulative exergy use efficiency were counteracted by reductions in the changes of the aggregate nitrogen contents ratio and aggregate cumulative exergy contents ratio. The empirical results also confirmed that different combinations of inputs and outputs as well as the quality of inputs and outputs could have more influence on the growth of nutrient and cumulative exergy use efficiency than factors that had driven productivity change.

Suggested Citation

  • Hoang, Viet-Ngu, 2011. "Measuring and decomposing changes in agricultural productivity, nitrogen use efficiency and cumulative exergy efficiency: Application to OECD agriculture," Ecological Modelling, Elsevier, vol. 222(1), pages 164-175.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:1:p:164-175
    DOI: 10.1016/j.ecolmodel.2010.09.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010005193
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.09.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vernon W. Ruttan, 2002. "Productivity Growth in World Agriculture: Sources and Constraints," Journal of Economic Perspectives, American Economic Association, vol. 16(4), pages 161-184, Fall.
    2. Hoang, Viet-Ngu & Alauddin, Mohammad, 2009. "Analysis of Agricultural Sustainability: A Review of Exergy Methodologies and Their Application in OECD," MPRA Paper 90406, University Library of Munich, Germany, revised 15 Mar 2010.
    3. Hoang, Viet-Ngu & Coelli, Tim, 2011. "Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 462-474.
    4. D. W. Jorgenson & Z. Griliches, 1967. "The Explanation of Productivity Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 34(3), pages 249-283.
    5. Ayres, Robert U., 1998. "Eco-thermodynamics: economics and the second law," Ecological Economics, Elsevier, vol. 26(2), pages 189-209, August.
    6. C. Lovell, 2003. "The Decomposition of Malmquist Productivity Indexes," Journal of Productivity Analysis, Springer, vol. 20(3), pages 437-458, November.
    7. Bjurek, Hans, 1996. " The Malmquist Total Factor Productivity Index," Scandinavian Journal of Economics, Wiley Blackwell, vol. 98(2), pages 303-313, June.
    8. Rosen, Marc A. & Dincer, Ibrahim & Kanoglu, Mehmet, 2008. "Role of exergy in increasing efficiency and sustainability and reducing environmental impact," Energy Policy, Elsevier, vol. 36(1), pages 128-137, January.
    9. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    10. Tim Coelli & Ludwig Lauwers & Guido Huylenbroeck, 2007. "Environmental efficiency measurement and the materials balance condition," Journal of Productivity Analysis, Springer, vol. 28(1), pages 3-12, October.
    11. Hezri, Adnan A. & Dovers, Stephen R., 2006. "Sustainability indicators, policy and governance: Issues for ecological economics," Ecological Economics, Elsevier, vol. 60(1), pages 86-99, November.
    12. Sciubba, Enrico, 2003. "Extended exergy accounting applied to energy recovery from waste: The concept of total recycling," Energy, Elsevier, vol. 28(13), pages 1315-1334.
    13. Wall, Göran, 1990. "Exergy conversion in the Japanese society," Energy, Elsevier, vol. 15(5), pages 435-444.
    14. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aparicio, Juan & López-Torres, Laura & Santín, Daniel, 2018. "Economic crisis and public education. A productivity analysis using a Hicks-Moorsteen index," Economic Modelling, Elsevier, vol. 71(C), pages 34-44.
    2. Kerstens, Kristiaan & Van de Woestyne, Ignace, 2014. "Comparing Malmquist and Hicks–Moorsteen productivity indices: Exploring the impact of unbalanced vs. balanced panel data," European Journal of Operational Research, Elsevier, vol. 233(3), pages 749-758.
    3. Rusielik, Robert, 2021. "Agricultural Efficiency And Its Components In European Union Countries Between 2009-2019. Analysis Using Aggregate Färe-Primont Productivity Indices," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2021(3).
    4. Robert Rusielik, 2021. "Agricultural Productivity in Europe: Hicks-Moorsteen Productivity Index Analysis," European Research Studies Journal, European Research Studies Journal, vol. 0(4B), pages 397-409.
    5. Li, Fu Jia & Dong, Suo Cheng & Li, Fei, 2012. "A system dynamics model for analyzing the eco-agriculture system with policy recommendations," Ecological Modelling, Elsevier, vol. 227(C), pages 34-45.
    6. Mad Ithnin Salleh & Shariffah Nur Illiana Syed Ismail & Nurul Fadly Habidin & Nor Azrin Md Latip, 2016. "Efficiency and Productivity Changes of the Malaysian Community Colleges," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 6(12), pages 407-424, December.
    7. Falavigna, Greta & Manello, Alessandro & Pavone, Sara, 2013. "Environmental efficiency, productivity and public funds: The case of the Italian agricultural industry," Agricultural Systems, Elsevier, vol. 121(C), pages 73-80.
    8. Hoang, Viet-Ngu & Coelli, Tim, 2011. "Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 462-474.
    9. Arjomandi, Amir & Valadkhani, Abbas & O’Brien, Martin, 2014. "Analysing banks’ intermediation and operational performance using the Hicks–Moorsteen TFP index: The case of Iran," Research in International Business and Finance, Elsevier, vol. 30(C), pages 111-125.
    10. Jiangfeng Hu & Jingjing Lyu & Xinyuan Zhang, 2022. "Evaluating Agricultural Sustainability and Green GDP in China: An Emergy Analysis," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    11. Viet-Ngu Hoang & Mohammad Alauddin, 2012. "Input-Orientated Data Envelopment Analysis Framework for Measuring and Decomposing Economic, Environmental and Ecological Efficiency: An Application to OECD Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(3), pages 431-452, March.
    12. Turčeková, Natália & Svetlanská, T. & Kollár, B. & Záhorský, T., 2015. "Agri-Environmental Performance of EU Member states," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 7(4), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    2. Viet-Ngu Hoang & Mohammad Alauddin, 2012. "Input-Orientated Data Envelopment Analysis Framework for Measuring and Decomposing Economic, Environmental and Ecological Efficiency: An Application to OECD Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(3), pages 431-452, March.
    3. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    4. Arnaud Abad & Paola Ravelojaona, 2020. "A Generalization of Environmental Productivity Analysis," Working Papers hal-02964799, HAL.
    5. C.J. O'Donnell, 2011. "The Sources of Productivity Change in the Manufacturing Sectors of the U.S. Economy," CEPA Working Papers Series WP072011, School of Economics, University of Queensland, Australia.
    6. Joanna Domagała, 2021. "Economic and Environmental Aspects of Agriculture in the EU Countries," Energies, MDPI, vol. 14(22), pages 1-23, November.
    7. C. O’Donnell, 2012. "An aggregate quantity framework for measuring and decomposing productivity change," Journal of Productivity Analysis, Springer, vol. 38(3), pages 255-272, December.
    8. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
    9. Dakpo, Hervé K & Jeanneaux, Philippe & Latruffe, Laure, 2014. "Inclusion of undesirable outputs in production technology modeling: The case of greenhouse gas emissions in French meat sheep farming," Working Papers 207806, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    10. Ke Wang & Zhifu Mi & Yi‐Ming Wei, 2019. "Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEA‐Based Materials Balance Approach," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 389-401, April.
    11. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    12. Seufert, Juergen Heinz & Arjomandi, Amir & Dakpo, K. Hervé, 2017. "Evaluating airline operational performance: A Luenberger-Hicks-Moorsteen productivity indicator," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 52-68.
    13. Valentin Zelenyuk, 2023. "Productivity analysis: roots, foundations, trends and perspectives," Journal of Productivity Analysis, Springer, vol. 60(3), pages 229-247, December.
    14. Arnaud Abad & Paola Ravelojaona, 2022. "A generalization of environmental productivity analysis," Post-Print hal-03592375, HAL.
    15. Hoang, Viet-Ngu & Alauddin, Mohammad, 2009. "Analysis of Agricultural Sustainability: A Review of Exergy Methodologies and Their Application in OECD," MPRA Paper 90406, University Library of Munich, Germany, revised 15 Mar 2010.
    16. Ke Wang & Yi-Ming Wei & Zhimin Huang, 2017. "Environmental efficiency and abatement efficiency measurements of China¡¯s thermal power industry: A data envelopment analysis based materials balance approach," CEEP-BIT Working Papers 108, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    17. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2019. "Environmental efficiency measurement with heterogeneous input quality: A nonparametric analysis of U.S. power plants," Energy Economics, Elsevier, vol. 81(C), pages 610-625.
    18. Aldanondo-Ochoa, Ana M. & Casasnovas-Oliva, Valero L. & Almansa-Sáez, M. Carmen, 2017. "Cross-constrained Measuring the Cost-environment Efficiency in Material Balance Based Frontier Models," Ecological Economics, Elsevier, vol. 142(C), pages 46-55.
    19. Alfons Oude Lansink & Alan Wall, 2014. "Frontier models for evaluating environmental efficiency: an overview," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 43-50.
    20. Andreas Eder, 2022. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Journal of Productivity Analysis, Springer, vol. 57(2), pages 157-176, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:1:p:164-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.