IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v227y2012icp34-45.html
   My bibliography  Save this article

A system dynamics model for analyzing the eco-agriculture system with policy recommendations

Author

Listed:
  • Li, Fu Jia
  • Dong, Suo Cheng
  • Li, Fei

Abstract

Ecological agriculture (eco-agriculture) is an approach to agriculture that seeks a balance between ecological and economic benefits to promote the sustainable development of both. This paper proposes a scientific method for analyzing the environmental and economic effects of eco-agriculture and simulating their long-term trend. Here, we focus on the eco-agriculture system of Kongtong District, Pingliang City, Gansu Province, China, and we build a system dynamics model named “AEP-SD” to evaluate the integrated effects of the system from 2009 to 2050. Under business as usual conditions, simulation results show rapid improvement until a peak is reached in 2027, after which the system will decline gradually. The model identifies some defects and disadvantages of the current agriculture system, such as the excessive increase of cattle slaughter, unstable production of methane, slow development of organic agriculture, and unsustainable energy structure. System improvement policies are offered and then proven by the model that they can indeed reduce the negative effects and eliminate the potential risks of system decline.

Suggested Citation

  • Li, Fu Jia & Dong, Suo Cheng & Li, Fei, 2012. "A system dynamics model for analyzing the eco-agriculture system with policy recommendations," Ecological Modelling, Elsevier, vol. 227(C), pages 34-45.
  • Handle: RePEc:eee:ecomod:v:227:y:2012:i:c:p:34-45
    DOI: 10.1016/j.ecolmodel.2011.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011005874
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Y.C. & Hong, F.W. & Lee, M.T., 2008. "A system dynamic based DSS for sustainable coral reef management in Kenting coastal zone, Taiwan," Ecological Modelling, Elsevier, vol. 211(1), pages 153-168.
    2. Tao, Zaipu, 2010. "Scenarios of China's oil consumption per capita (OCPC) using a hybrid Factor Decomposition–System Dynamics (SD) simulation," Energy, Elsevier, vol. 35(1), pages 168-180.
    3. Gale, Fred P., 2000. "Economic specialization versus ecological diversification: the trade policy implications of taking the ecosystem approach seriously," Ecological Economics, Elsevier, vol. 34(3), pages 285-292, September.
    4. Hezri, Adnan A. & Dovers, Stephen R., 2006. "Sustainability indicators, policy and governance: Issues for ecological economics," Ecological Economics, Elsevier, vol. 60(1), pages 86-99, November.
    5. Shi, Tian & Gill, Roderic, 2005. "Developing effective policies for the sustainable development of ecological agriculture in China: the case study of Jinshan County with a systems dynamics model," Ecological Economics, Elsevier, vol. 53(2), pages 223-246, April.
    6. Hoang, Viet-Ngu, 2011. "Measuring and decomposing changes in agricultural productivity, nitrogen use efficiency and cumulative exergy efficiency: Application to OECD agriculture," Ecological Modelling, Elsevier, vol. 222(1), pages 164-175.
    7. Chen, G.Q. & Jiang, M.M. & Yang, Z.F. & Chen, B. & Ji, Xi & Zhou, J.B., 2009. "Exergetic assessment for ecological economic system: Chinese agriculture," Ecological Modelling, Elsevier, vol. 220(3), pages 397-410.
    8. Ropke, Inge, 2005. "Trends in the development of ecological economics from the late 1980s to the early 2000s," Ecological Economics, Elsevier, vol. 55(2), pages 262-290, November.
    9. Sciubba, Enrico, 2003. "Extended exergy accounting applied to energy recovery from waste: The concept of total recycling," Energy, Elsevier, vol. 28(13), pages 1315-1334.
    10. Larsson, Markus & Granstedt, Artur, 2010. "Sustainable governance of the agriculture and the Baltic Sea -- Agricultural reforms, food production and curbed eutrophication," Ecological Economics, Elsevier, vol. 69(10), pages 1943-1951, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parisa Alizadeh & Hosein Mohammadi & Naser Shahnoushi & Sayed Saghaian & Alireza Pooya, 2020. "Application of System Thinking Approach in Identifying the Challenges of Beef Value Chain," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 12(2), June.
    2. Zhe Chen & Apurbo Sarkar & Ahmed Khairul Hasan & Xiaojing Li & Xianli Xia, 2021. "Evaluation of Farmers’ Ecological Cognition in Responses to Specialty Orchard Fruit Planting Behavior: Evidence in Shaanxi and Ningxia, China," Agriculture, MDPI, vol. 11(11), pages 1-18, October.
    3. Gabriela KOLACKOVA & Igor KREJCI & Ivana TICHA, 2017. "Dynamics of the small farmers' behaviour - scenario simulations," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 103-120.
    4. Chengji Han & Guogang Wang & Hongbo Yang, 2022. "Study on the Coupling System of Grain-Grass-Livestock of Herbivorous Animal Husbandry in Agricultural Areas: A Case Study of Najitun Farm of Hulunbuir Agricultural Reclamation in China," Land, MDPI, vol. 11(5), pages 1-26, May.
    5. Zhai, Yijie & Bai, Yueyang & Wu, Zhen & Hong, Jinglan & Shen, Xiaoxu & Xie, Fei & Li, Xiangzhi, 2022. "Grain self-sufficiency versus environmental stress: An integration of system dynamics and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Martínez-Fernández, Julia & Esteve-Selma, Miguel Angel & Baños-González, Isabel & Carreño, Francisca & Moreno, Angeles, 2013. "Sustainability of Mediterranean irrigated agro-landscapes," Ecological Modelling, Elsevier, vol. 248(C), pages 11-19.
    7. Baur, Ivo & Binder, Claudia R., 2015. "Modeling and assessing scenarios of common property pastures management in Switzerland," Ecological Economics, Elsevier, vol. 119(C), pages 292-305.
    8. Teng Yuan Hsiao & Yu Yao Hsu, 2014. "Modeling Different Scenarios for Forecasting Human Resources Requirements in Taiwan¡¯s Recreational Farms," International Journal of Business Administration, International Journal of Business Administration, Sciedu Press, vol. 5(6), pages 1-12, November.
    9. Kenny, Daniel C., 2017. "Modeling of natural and social capital on farms: Toward useable integration," Ecological Modelling, Elsevier, vol. 356(C), pages 1-13.
    10. Bartolini, Fabio & Viaggi, Davide, 2012. "An analysis of policy scenario effects on the adoption of energy production on the farm: A case study in Emilia–Romagna (Italy)," Energy Policy, Elsevier, vol. 51(C), pages 454-464.
    11. Yuan Shen & Linlin Shi & Yueyue Tao & Haihou Wang & Changying Lu & Siyuan Li & Mingxing Shen, 2022. "Sustainability Evaluation and Optimization on the Modern Agro-Pastoral Circular System Integrating Emergy Analysis and Life Cycle Assessment," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
    12. Siti Hanani Isa & Mohd Noor Afiq Ramlee & Muhamad Safiih Lola & Mhd Ikhwanuddin & Mohamad N Azra & Mohd Tajuddin Abdullah & Syerrina Zakaria & Yahaya Ibrahim, 2021. "A system dynamics model for analysing the eco-aquaculture system of integrated aquaculture park in Malaysia with policy recommendations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 511-533, January.
    13. Akopov, Andranik S. & Beklaryan, Levon A. & Saghatelyan, Armen K., 2017. "Agent-based modelling for ecological economics: A case study of the Republic of Armenia," Ecological Modelling, Elsevier, vol. 346(C), pages 99-118.
    14. Luong Van Pham & Carl Smith, 2014. "Drivers of agricultural sustainability in developing countries: a review," Environment Systems and Decisions, Springer, vol. 34(2), pages 326-341, June.
    15. Xingpeng Chen & Guokui Wang & Xiaojia Guo & Jinxiu Fu, 2016. "An Analysis Based on SD Model for Energy-Related CO 2 Mitigation in the Chinese Household Sector," Energies, MDPI, vol. 9(12), pages 1-18, December.
    16. Banos-González, Isabel & Martínez-Fernández, Julia & Esteve-Selma, Miguel Ángel, 2015. "Dynamic integration of sustainability indicators in insular socio-ecological systems," Ecological Modelling, Elsevier, vol. 306(C), pages 130-144.
    17. Dongsheng Zhang & Ming Yang & Ziyou Wang, 2022. "Resources or Capital?—The Quality Improvement Mechanism of Precision Poverty Alleviation by Land Elements," Land, MDPI, vol. 11(10), pages 1-24, October.
    18. Li, Yu & Zheng, Ji & Li, Zehong & Yuan, Liang & Yang, Yang & Li, Fujia, 2017. "Re-estimating CO2 emission factors for gasoline passenger cars adding driving behaviour characteristics——A case study of Beijing," Energy Policy, Elsevier, vol. 102(C), pages 353-361.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siti Hanani Isa & Mohd Noor Afiq Ramlee & Muhamad Safiih Lola & Mhd Ikhwanuddin & Mohamad N Azra & Mohd Tajuddin Abdullah & Syerrina Zakaria & Yahaya Ibrahim, 2021. "A system dynamics model for analysing the eco-aquaculture system of integrated aquaculture park in Malaysia with policy recommendations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 511-533, January.
    2. Viet-Ngu Hoang & Mohammad Alauddin, 2012. "Input-Orientated Data Envelopment Analysis Framework for Measuring and Decomposing Economic, Environmental and Ecological Efficiency: An Application to OECD Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(3), pages 431-452, March.
    3. Huilu Yu & Youning Yan & Suocheng Dong, 2019. "A System Dynamics Model to Assess the Effectiveness of Governmental Support Policies for Renewable Electricity," Sustainability, MDPI, vol. 11(12), pages 1-27, June.
    4. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    5. Lehtonen, Markku, 2009. "OECD organisational discourse, peer reviews and sustainable development: An ecological-institutionalist perspective," Ecological Economics, Elsevier, vol. 69(2), pages 389-397, December.
    6. Boezeman, Daan & Leroy, Pieter & Maas, Rob & Kruitwagen, Sonja, 2010. "The (limited) political influence of ecological economics: A case study on Dutch environmental policies," Ecological Economics, Elsevier, vol. 69(9), pages 1756-1764, July.
    7. Hoang, Viet-Ngu, 2011. "Measuring and decomposing changes in agricultural productivity, nitrogen use efficiency and cumulative exergy efficiency: Application to OECD agriculture," Ecological Modelling, Elsevier, vol. 222(1), pages 164-175.
    8. Castro e Silva, Manuela & Teixeira, Aurora A.C., 2011. "A bibliometric account of the evolution of EE in the last two decades: Is ecological economics (becoming) a post-normal science?," Ecological Economics, Elsevier, vol. 70(5), pages 849-862, March.
    9. Yang, J. & Chen, B., 2014. "Extended exergy-based sustainability accounting of a household biogas project in rural China," Energy Policy, Elsevier, vol. 68(C), pages 264-272.
    10. Chen, Z.M. & Chen, B. & Chen, G.Q., 2011. "Cosmic exergy based ecological assessment for a wetland in Beijing," Ecological Modelling, Elsevier, vol. 222(2), pages 322-329.
    11. Kerstens, Kristiaan & Van de Woestyne, Ignace, 2014. "Comparing Malmquist and Hicks–Moorsteen productivity indices: Exploring the impact of unbalanced vs. balanced panel data," European Journal of Operational Research, Elsevier, vol. 233(3), pages 749-758.
    12. Hardy, Derrylea J. & Patterson, Murray G., 2012. "Cross-cultural environmental research in New Zealand: Insights for ecological economics research practice," Ecological Economics, Elsevier, vol. 73(C), pages 75-85.
    13. Ali DOUAI, 2007. "Wealth, Well-being and Value(s): A Proposition of Structuring Concepts for a (real) Transdisciplinary Dialogue within Ecological Economics," Cahiers du GREThA (2007-2019) 2007-18, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    14. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    15. Nielsen, S.N. & Müller, F., 2009. "Understanding the functional principles of nature—Proposing another type of ecosystem services," Ecological Modelling, Elsevier, vol. 220(16), pages 1913-1925.
    16. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    17. Rusielik, Robert, 2021. "Agricultural Efficiency And Its Components In European Union Countries Between 2009-2019. Analysis Using Aggregate Färe-Primont Productivity Indices," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2021(3).
    18. Silvio Franco & Barbara Pancino & Angelo Martella, 2021. "Mapping National Environmental Sustainability Distribution by Ecological Footprint: The Case of Italy," Sustainability, MDPI, vol. 13(15), pages 1-14, August.
    19. Matinzadeh, Mohammad Mehdi & Abedi Koupai, Jahangir & Sadeghi-Lari, Adnan & Nozari, Hamed & Shayannejad, Mohammad, 2017. "Development of an innovative integrated model for the simulation of nitrogen dynamics in farmlands with drainage systems using the system dynamics approach," Ecological Modelling, Elsevier, vol. 347(C), pages 11-28.
    20. Friederike Behr & Gero Oertzen & Manuel Dienst, 2021. "Managing Sustainability and Carbon-Neutrality in the Public Administration—Case Report of a German State Institution," Sustainability, MDPI, vol. 13(8), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:227:y:2012:i:c:p:34-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.