IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i1d10.1007_s10668-020-00594-4.html
   My bibliography  Save this article

A system dynamics model for analysing the eco-aquaculture system of integrated aquaculture park in Malaysia with policy recommendations

Author

Listed:
  • Siti Hanani Isa

    (Universiti Malaysia Terengganu)

  • Mohd Noor Afiq Ramlee

    (Universiti Malaysia Terengganu)

  • Muhamad Safiih Lola

    (Universiti Malaysia Terengganu
    Universiti Malaysia Terengganu)

  • Mhd Ikhwanuddin

    (Universiti Malaysia Terengganu)

  • Mohamad N Azra

    (Universiti Malaysia Terengganu)

  • Mohd Tajuddin Abdullah

    (Universiti Malaysia Terengganu)

  • Syerrina Zakaria

    (Universiti Malaysia Terengganu)

  • Yahaya Ibrahim

    (Universiti Sultan Zainal Abidin)

Abstract

The sustainability of aquaculture industry strongly depends on numerous factors such as environment, ecology, economics, industry, human behaviour, policy and many others. The interdependence and balance of these factors is called as eco-aquaculture. However, eco-aquaculture field has not been widely studied, especially in Malaysia. Therefore, to enhance the sustainable development capacity of an eco-aquaculture system, the integrated simulation and analysis of the material-energy flow processes and the trends of process generating the ecological and economic positive–negative effects should be addressed. Thus, the objectives of this study are firstly to develop a system dynamics model of the eco-aquaculture system named ‘SD-AQEP’ to simulate quantitatively flow in the local iSHARP aquaculture industry; secondly, to analyse the integrated effects of the ecological economy, identify the defects and finally to make recommendations to improve the system performance. We build a system dynamics model of a Malaysian eco-aquaculture system (SD-AQEP) to quantify its integrated material and energy flows, identify systemic defects and recommend improvements in its performance. The systems is also able to scientifically diagnose the potential shortcomings and defects in the system, provide the basic improvement policies as well as check the effectiveness of the improvement policies. Hence, this system has the potential to reveal the internal structures in the complex system with ecosystem and other systems such as economy, environment and human activity.

Suggested Citation

  • Siti Hanani Isa & Mohd Noor Afiq Ramlee & Muhamad Safiih Lola & Mhd Ikhwanuddin & Mohamad N Azra & Mohd Tajuddin Abdullah & Syerrina Zakaria & Yahaya Ibrahim, 2021. "A system dynamics model for analysing the eco-aquaculture system of integrated aquaculture park in Malaysia with policy recommendations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 511-533, January.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:1:d:10.1007_s10668-020-00594-4
    DOI: 10.1007/s10668-020-00594-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00594-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00594-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Tian & Gill, Roderic, 2005. "Developing effective policies for the sustainable development of ecological agriculture in China: the case study of Jinshan County with a systems dynamics model," Ecological Economics, Elsevier, vol. 53(2), pages 223-246, April.
    2. Dey, Madan Mohan & Kumar, Praduman & Chen, Oai Li & Khan, Md. Akhtaruzzaman & Barik, Nagesh Kumar & Li, Luping & Nissapa, Ayut & Pham, Ngoc Sao, 2013. "Potential impact of genetically improved carp strains in Asia," Food Policy, Elsevier, vol. 43(C), pages 306-320.
    3. Badjeck, Marie-Caroline & Allison, Edward H. & Halls, Ashley S. & Dulvy, Nicholas K., 2010. "Impacts of climate variability and change on fishery-based livelihoods," Marine Policy, Elsevier, vol. 34(3), pages 375-383, May.
    4. Nathan Pelletier & Peter Tyedmers, 2010. "Life Cycle Assessment of Frozen Tilapia Fillets From Indonesian Lake‐Based and Pond‐Based Intensive Aquaculture Systems," Journal of Industrial Ecology, Yale University, vol. 14(3), pages 467-481, June.
    5. Li, Fu Jia & Dong, Suo Cheng & Li, Fei, 2012. "A system dynamics model for analyzing the eco-agriculture system with policy recommendations," Ecological Modelling, Elsevier, vol. 227(C), pages 34-45.
    6. Leung, PingSun & Shang, Yung C., 1989. "Modeling prawn production management system: A dynamic Markov decision approach," Agricultural Systems, Elsevier, vol. 29(1), pages 5-20.
    7. Chang, Y.C. & Hong, F.W. & Lee, M.T., 2008. "A system dynamic based DSS for sustainable coral reef management in Kenting coastal zone, Taiwan," Ecological Modelling, Elsevier, vol. 211(1), pages 153-168.
    8. Tao, Zaipu, 2010. "Scenarios of China's oil consumption per capita (OCPC) using a hybrid Factor Decomposition–System Dynamics (SD) simulation," Energy, Elsevier, vol. 35(1), pages 168-180.
    9. Dipsikha Dasgupta & Anupam Debsarkar & Tumpa Hazra & B. K. Bala & Amitava Gangopadhyay & Debasish Chatterjee, 2017. "Scenario of future e-waste generation and recycle-reuse-landfill-based disposal pattern in India: a system dynamics approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1473-1487, August.
    10. S. Marale, 2013. "Strategies for coastal ecosystem management in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(1), pages 23-38, February.
    11. Qudrat-Ullah, Hassan & Seong, Baek Seo, 2010. "How to do structural validity of a system dynamics type simulation model: The case of an energy policy model," Energy Policy, Elsevier, vol. 38(5), pages 2216-2224, May.
    12. S. Marale, 2012. "Shifting role of ecology in solving global environmental problems: selected practical tools," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(6), pages 869-884, December.
    13. P. Lopes, 2008. "Extracted and farmed shrimp fisheries in Brazil: economic, environmental and social consequences of exploitation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(5), pages 639-655, October.
    14. F. Dahdouh-Guebas & T. Zetterström & P. Rönnbäck & M. Troell & A. Wickramasinghe & N. Koedam, 2002. "Recent Changes in Land-Use in the Pambala–Chilaw Lagoon Complex (Sri Lanka) Investigated Using Remote Sensing and GIS: Conservation of Mangroves vs. Development of Shrimp Farming," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 4(2), pages 185-200, June.
    15. Xiao-jun Wang & Jian-yun Zhang & Jiu-fu Liu & Guo-qing Wang & Rui-min He & Amgad Elmahdi & Sondoss Elsawah, 2011. "Water resources planning and management based on system dynamics: a case study of Yulin city," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(2), pages 331-351, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Zhao & Wenbin Pan & Hao Lin, 2022. "Can Fujian Achieve Carbon Peak and Pollutant Reduction Targets before 2030? Case Study of 3E System in Southeastern China Based on System Dynamics," Sustainability, MDPI, vol. 14(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Fu Jia & Dong, Suo Cheng & Li, Fei, 2012. "A system dynamics model for analyzing the eco-agriculture system with policy recommendations," Ecological Modelling, Elsevier, vol. 227(C), pages 34-45.
    2. Huilu Yu & Youning Yan & Suocheng Dong, 2019. "A System Dynamics Model to Assess the Effectiveness of Governmental Support Policies for Renewable Electricity," Sustainability, MDPI, vol. 11(12), pages 1-27, June.
    3. Banos-González, Isabel & Martínez-Fernández, Julia & Esteve-Selma, Miguel Ángel, 2015. "Dynamic integration of sustainability indicators in insular socio-ecological systems," Ecological Modelling, Elsevier, vol. 306(C), pages 130-144.
    4. Akopov, Andranik S. & Beklaryan, Levon A. & Saghatelyan, Armen K., 2017. "Agent-based modelling for ecological economics: A case study of the Republic of Armenia," Ecological Modelling, Elsevier, vol. 346(C), pages 99-118.
    5. Baur, Ivo & Binder, Claudia R., 2015. "Modeling and assessing scenarios of common property pastures management in Switzerland," Ecological Economics, Elsevier, vol. 119(C), pages 292-305.
    6. Xingpeng Chen & Guokui Wang & Xiaojia Guo & Jinxiu Fu, 2016. "An Analysis Based on SD Model for Energy-Related CO 2 Mitigation in the Chinese Household Sector," Energies, MDPI, vol. 9(12), pages 1-18, December.
    7. Gabriela KOLACKOVA & Igor KREJCI & Ivana TICHA, 2017. "Dynamics of the small farmers' behaviour - scenario simulations," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 103-120.
    8. Parvin Berenjkar & Yu Yan Li & Qiuyan Yuan, 2021. "The application of system dynamics in different practices of a waste management system," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 15695-15724, November.
    9. Dehghan, Hamed & Amin-Naseri, Mohammad Reza & Nahavandi, Nasim, 2021. "A system dynamics model to analyze future electricity supply and demand in Iran under alternative pricing policies," Utilities Policy, Elsevier, vol. 69(C).
    10. Yu, Shiwei & Wei, Yi-ming, 2012. "Prediction of China's coal production-environmental pollution based on a hybrid genetic algorithm-system dynamics model," Energy Policy, Elsevier, vol. 42(C), pages 521-529.
    11. Yinhe Bu & Xingping Zhang, 2021. "On the Way to Integrate Increasing Shares of Variable Renewables in China: Experience from Flexibility Modification and Deep Peak Regulation Ancillary Service Market Based on MILP-UC Programming," Sustainability, MDPI, vol. 13(5), pages 1-22, February.
    12. James D. A. Millington & Hang Xiong & Steve Peterson & Jeremy Woods, 2017. "Integrating Modelling Approaches for Understanding Telecoupling: Global Food Trade and Local Land Use," Land, MDPI, vol. 6(3), pages 1-18, August.
    13. Torres, Juan Pablo & Barrera, Jose Ignacio & Kunc, Martin & Charters, Steve, 2021. "The dynamics of wine tourism adoption in Chile," Journal of Business Research, Elsevier, vol. 127(C), pages 474-485.
    14. Matinzadeh, Mohammad Mehdi & Abedi Koupai, Jahangir & Sadeghi-Lari, Adnan & Nozari, Hamed & Shayannejad, Mohammad, 2017. "Development of an innovative integrated model for the simulation of nitrogen dynamics in farmlands with drainage systems using the system dynamics approach," Ecological Modelling, Elsevier, vol. 347(C), pages 11-28.
    15. Li, Yu & Zheng, Ji & Li, Zehong & Yuan, Liang & Yang, Yang & Li, Fujia, 2017. "Re-estimating CO2 emission factors for gasoline passenger cars adding driving behaviour characteristics——A case study of Beijing," Energy Policy, Elsevier, vol. 102(C), pages 353-361.
    16. José D. Morcillo & Fabiola Angulo & Carlos J. Franco, 2020. "Analyzing the Hydroelectricity Variability on Power Markets from a System Dynamics and Dynamic Systems Perspective: Seasonality and ENSO Phenomenon," Energies, MDPI, vol. 13(9), pages 1-25, May.
    17. Rui Jun Qin & Ho Hon Leung, 2021. "Becoming a Traditional Village: Heritage Protection and Livelihood Transformation of a Chinese Village," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    18. Matthew, George Jr. & Nuttall, William J & Mestel, Ben & Dooley, Laurence S, 2017. "A dynamic simulation of low-carbon policy influences on endogenous electricity demand in an isolated island system," Energy Policy, Elsevier, vol. 109(C), pages 121-131.
    19. Hosseini, Seyed Hossein & Shakouri G., Hamed & Kazemi, Aliyeh, 2021. "Oil price future regarding unconventional oil production and its near-term deployment: A system dynamics approach," Energy, Elsevier, vol. 222(C).
    20. Hendalianpour, Ayad & Liu, Peide & Amirghodsi, Sirous & Hamzehlou, Mohammad, 2022. "Designing a System Dynamics model to simulate criteria affecting oil and gas development contracts," Resources Policy, Elsevier, vol. 78(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:1:d:10.1007_s10668-020-00594-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.