IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v347y2017icp11-28.html
   My bibliography  Save this article

Development of an innovative integrated model for the simulation of nitrogen dynamics in farmlands with drainage systems using the system dynamics approach

Author

Listed:
  • Matinzadeh, Mohammad Mehdi
  • Abedi Koupai, Jahangir
  • Sadeghi-Lari, Adnan
  • Nozari, Hamed
  • Shayannejad, Mohammad

Abstract

In the subsurface drainage system, there is a high potential for nitrate leaching, causing the pollution of both surface and ground water. In this research, a simple but comprehensive process-based model was developed for simulating the water flow and nitrogen dynamics. Processes considered in this model included all the important processes involved in nitrogen transformations, as well as nitrogen transport. Nitrogen transformation processes comprised fertilizer dissolution, nitrification, denitrification, ammonium volatilization, mineralization and immobilization. The nitrogen transport processes included nitrogen uptake by the plant, soil adsorption, upward flux, surface runoff losses and drain losses in the fields with the drainage network. For model evaluation, the measured data obtained from Imam agro-industrial Company, in Khuzestan, Iran, were used. Computed RMSE of the simulated water table, the drainage discharge rate, nitrate and ammonium concentration in drainage water were determined to be 14.58cm,1.82mm/day,1.73mg/L and 0.48mg/L, respectively. The results indicated a good agreement between the observed and simulated data. This model could be, therefore, used for fertilizer management, thereby reducing the concentration of nitrate and ammonium in the drainage water and helping to prevent the environmental pollution.

Suggested Citation

  • Matinzadeh, Mohammad Mehdi & Abedi Koupai, Jahangir & Sadeghi-Lari, Adnan & Nozari, Hamed & Shayannejad, Mohammad, 2017. "Development of an innovative integrated model for the simulation of nitrogen dynamics in farmlands with drainage systems using the system dynamics approach," Ecological Modelling, Elsevier, vol. 347(C), pages 11-28.
  • Handle: RePEc:eee:ecomod:v:347:y:2017:i:c:p:11-28
    DOI: 10.1016/j.ecolmodel.2016.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016305051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaynes, D.B., 2013. "Nitrate loss in subsurface drainage and corn yield as affected by timing of sidedress nitrogen," Agricultural Water Management, Elsevier, vol. 130(C), pages 52-60.
    2. Chang, Y.C. & Hong, F.W. & Lee, M.T., 2008. "A system dynamic based DSS for sustainable coral reef management in Kenting coastal zone, Taiwan," Ecological Modelling, Elsevier, vol. 211(1), pages 153-168.
    3. Mukherjee, Joyita & Ray, Santanu & Ghosh, Phani Bhusan, 2013. "A system dynamic modeling of carbon cycle from mangrove litter to the adjacent Hooghly estuary, India," Ecological Modelling, Elsevier, vol. 252(C), pages 185-195.
    4. Singh, R. & Helmers, M.J. & Qi, Zhiming, 2006. "Calibration and validation of DRAINMOD to design subsurface drainage systems for Iowa's tile landscapes," Agricultural Water Management, Elsevier, vol. 85(3), pages 221-232, October.
    5. Han, Hongjuan & Chen, Yonggen & Jørgensen, Sven Erik & Nielsen, Søren Nors & Hu, Weiping, 2009. "A system-dynamic model on the competitive growth between Potamogeton malaianus Miq. and Spirogyra sp," Ecological Modelling, Elsevier, vol. 220(18), pages 2206-2217.
    6. Borin, Maurizio & Morari, Francesco & Bonaiti, Gabriele & Paasch, Mary & Wayne Skaggs, R., 2000. "Analysis of DRAINMOD performances with different detail of soil input data in the Veneto region of Italy," Agricultural Water Management, Elsevier, vol. 42(3), pages 259-272, January.
    7. Williams, M.R. & King, K.W. & Fausey, N.R., 2015. "Drainage water management effects on tile discharge and water quality," Agricultural Water Management, Elsevier, vol. 148(C), pages 43-51.
    8. Weller, Florian & Cecchini, Lee-Anne & Shannon, Lynne & Sherley, Richard B. & Crawford, Robert J.M. & Altwegg, Res & Scott, Leanne & Stewart, Theodor & Jarre, Astrid, 2014. "A system dynamics approach to modelling multiple drivers of the African penguin population on Robben Island, South Africa," Ecological Modelling, Elsevier, vol. 277(C), pages 38-56.
    9. Walters, Jeffrey P. & Archer, David W. & Sassenrath, Gretchen F. & Hendrickson, John R. & Hanson, Jon D. & Halloran, John M. & Vadas, Peter & Alarcon, Vladimir J., 2016. "Exploring agricultural production systems and their fundamental components with system dynamics modelling," Ecological Modelling, Elsevier, vol. 333(C), pages 51-65.
    10. Yang, J.Y. & Drury, C.F. & De Jong, R. & Huffman, E.C. & Yang, X.M. & Reid, Keith, 2013. "Sensitivity analysis for nitrogen inputs, nitrogen outputs, and changes in biofuel crop acreages for predicting residual soil nitrogen and nitrate leaching in Canadian agricultural soils," Ecological Modelling, Elsevier, vol. 267(C), pages 26-38.
    11. Yang, Chun-Chieh & Prasher, Shiv O. & Wang, Shaoli & Kim, Seung Hyun & Tan, Chin S. & Drury, Craig & Patel, Ramanbhai M., 2007. "Simulation of nitrate-N movement in southern Ontario, Canada with DRAINMOD-N," Agricultural Water Management, Elsevier, vol. 87(3), pages 299-306, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Varga, M. & Csukas, B., 2017. "Generation of extensible ecosystem models from a network structure and from locally executable programs," Ecological Modelling, Elsevier, vol. 364(C), pages 25-41.
    2. Francisco C. Marques & Fernando A. F. Ferreira & Constantin Zopounidis & Audrius Banaitis, 2022. "A system dynamics-based approach to determinants of family business growth," Annals of Operations Research, Springer, vol. 311(2), pages 799-819, April.
    3. Kopainsky, Birgit & Hager, Gerid & Herrera, Hugo & Nyanga, Progress H., 2017. "Transforming food systems at local levels: Using participatory system dynamics in an interactive manner to refine small-scale farmers’ mental models," Ecological Modelling, Elsevier, vol. 362(C), pages 101-110.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Hao & Qi, Zhiming & Hu, Kelin & Li, Baoguo & Prasher, Shiv O., 2018. "Modelling subsurface drainage and nitrogen losses from artificially drained cropland using coupled DRAINMOD and WHCNS models," Agricultural Water Management, Elsevier, vol. 195(C), pages 201-210.
    2. Revuelta-Acosta, J.D. & Flanagan, D.C. & Engel, B.A. & King, K.W., 2021. "Improvement of the Water Erosion Prediction Project (WEPP) model for quantifying field scale subsurface drainage discharge," Agricultural Water Management, Elsevier, vol. 244(C).
    3. Salazar, Osvaldo & Wesström, Ingrid & Joel, Abraham, 2008. "Evaluation of DRAINMOD using saturated hydraulic conductivity estimated by a pedotransfer function model," Agricultural Water Management, Elsevier, vol. 95(10), pages 1135-1143, October.
    4. Bonaiti, Gabriele & Borin, Maurizio, 2010. "Efficiency of controlled drainage and subirrigation in reducing nitrogen losses from agricultural fields," Agricultural Water Management, Elsevier, vol. 98(2), pages 343-352, December.
    5. Salazar, Osvaldo & Wesström, Ingrid & Youssef, Mohamed A. & Skaggs, R. Wayne & Joel, Abraham, 2009. "Evaluation of the DRAINMOD-N II model for predicting nitrogen losses in a loamy sand under cultivation in south-east Sweden," Agricultural Water Management, Elsevier, vol. 96(2), pages 267-281, February.
    6. Ana Paula Coelho Clauberg & Renato de Mello & Flávio José Simioni & Simone Sehnem, 2021. "System for assessing the sustainability conditions of small hydro plants by fuzzy logic," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(2), pages 300-317, March.
    7. Ali, Muhammad Fadzli & Akber, Md. Ali & Smith, Carl & Aziz, Ammar Abdul, 2021. "The dynamics of rubber production in Malaysia: Potential impacts, challenges and proposed interventions," Forest Policy and Economics, Elsevier, vol. 127(C).
    8. Steliana Rodino & Ruxandra Pop & Cristina Sterie & Andreea Giuca & Eduard Dumitru, 2023. "Developing an Evaluation Framework for Circular Agriculture: A Pathway to Sustainable Farming," Agriculture, MDPI, vol. 13(11), pages 1-24, October.
    9. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    10. Yun Eui Choi & Kihwan Song & Min Kim & Junga Lee, 2017. "Transformation Planning for Resilient Wildlife Habitats in Ecotourism Systems," Sustainability, MDPI, vol. 9(4), pages 1-28, March.
    11. Wang, X. & Mosley, C.T. & Frankenberger, J.R. & Kladivko, E.J., 2006. "Subsurface drain flow and crop yield predictions for different drain spacings using DRAINMOD," Agricultural Water Management, Elsevier, vol. 79(2), pages 113-136, January.
    12. Douglas J. Crookes & James N. Blignaut, 2015. "Debunking the myth that a legal trade will solve the rhino horn crisis: A system dynamics model for market demand," Working Papers 520, Economic Research Southern Africa.
    13. Zhang, Jiarui & Jørgensen, Sven E. & Lu, Jianjian & Nielsen, Søren N. & Wang, Qiang, 2014. "A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming," Ecological Modelling, Elsevier, vol. 294(C), pages 105-116.
    14. Tonnang, Henri E.Z. & Hervé, Bisseleua D.B. & Biber-Freudenberger, Lisa & Salifu, Daisy & Subramanian, Sevgan & Ngowi, Valentine B. & Guimapi, Ritter Y.A. & Anani, Bruce & Kakmeni, Francois M.M. & Aff, 2017. "Advances in crop insect modelling methods—Towards a whole system approach," Ecological Modelling, Elsevier, vol. 354(C), pages 88-103.
    15. Cooper, Gregory S. & Rich, Karl M. & Shankar, Bhavani & Rana, Vinay & Ratna, Nazmun N. & Kadiyala, Suneetha & Alam, Mohammad J. & Nadagouda, Sharan B., 2021. "Identifying ‘win-win-win’ futures from inequitable value chain trade-offs: A system dynamics approach," Agricultural Systems, Elsevier, vol. 190(C).
    16. Helmers, M.J. & Abendroth, L. & Reinhart, B. & Chighladze, G. & Pease, L. & Bowling, L. & Youssef, M. & Ghane, E. & Ahiablame, L. & Brown, L. & Fausey, N. & Frankenberger, J. & Jaynes, D. & King, K. &, 2022. "Impact of controlled drainage on subsurface drain flow and nitrate load: A synthesis of studies across the U.S. Midwest and Southeast," Agricultural Water Management, Elsevier, vol. 259(C).
    17. Xiaopeng Guo & Xiaodan Guo & Jiahai Yuan, 2014. "Impact Analysis of Air Pollutant Emission Policies on Thermal Coal Supply Chain Enterprises in China," Sustainability, MDPI, vol. 7(1), pages 1-21, December.
    18. Igor Krejčí & Pavel Moulis & Jana Pitrová & Ivana Tichá & Ladislav Pilař & Jan Rydval, 2019. "Traps and Opportunities of Czech Small-Scale Beef Cattle Farming," Sustainability, MDPI, vol. 11(15), pages 1-26, August.
    19. Huilu Yu & Youning Yan & Suocheng Dong, 2019. "A System Dynamics Model to Assess the Effectiveness of Governmental Support Policies for Renewable Electricity," Sustainability, MDPI, vol. 11(12), pages 1-27, June.
    20. Benabderrazik, K. & Kopainsky, B. & Tazi, L. & Joerin, J. & Six, J., 2021. "Agricultural intensification can no longer ignore water conservation – A systemic modelling approach to the case of tomato producers in Morocco," Agricultural Water Management, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:347:y:2017:i:c:p:11-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.