IDEAS home Printed from https://ideas.repec.org/p/zbw/zewdip/21039.html
   My bibliography  Save this paper

How effective is carbon pricing? A machine learning approach to policy evaluation

Author

Listed:
  • Abrell, Jan
  • Kosch, Mirjam
  • Rausch, Sebastian

Abstract

While carbon taxes are generally seen as a rational policy response to climate change, knowledge about their performance from an expost perspective is still limited. This paper analyzes the emissions and cost impacts of the UK CPS, a carbon tax levied on all fossil-fired power plants. To overcome the problem of a missing control group, we propose a policy evaluation approach which leverages economic theory and machine learning for counterfactual prediction. Our results indicate that in the period 2013-2016 the CPS lowered emissions by 6.2 percent at an average cost of €18 per ton. We find substantial temporal heterogeneity in tax-induced impacts which stems from variation in relative fuel prices. An important implication for climate policy is that in the short run a higher carbon tax does not necessarily lead to higher emissions reductions or higher costs.

Suggested Citation

  • Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2021. "How effective is carbon pricing? A machine learning approach to policy evaluation," ZEW Discussion Papers 21-039, ZEW - Leibniz Centre for European Economic Research.
  • Handle: RePEc:zbw:zewdip:21039
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/233873/1/1757137602.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Petrick, Sebastian & Wagner, Ulrich J., 2014. "The impact of carbon trading on industry: Evidence from German manufacturing firms," Kiel Working Papers 1912, Kiel Institute for the World Economy (IfW Kiel).
    2. Samii, Cyrus & Paler, Laura & Daly, Sarah Zukerman, 2016. "Retrospective Causal Inference with Machine Learning Ensembles: An Application to Anti-recidivism Policies in Colombia," Political Analysis, Cambridge University Press, vol. 24(4), pages 434-456.
    3. Lawrence H. Goulder & Marc A. C. Hafstead & Roberton C. Williams III, 2016. "General Equilibrium Impacts of a Federal Clean Energy Standard," American Economic Journal: Economic Policy, American Economic Association, vol. 8(2), pages 186-218, May.
    4. Leroutier, Marion, 2022. "Carbon pricing and power sector decarbonization: Evidence from the UK," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    5. Martin, Ralf & de Preux, Laure B. & Wagner, Ulrich J., 2014. "The impact of a carbon tax on manufacturing: Evidence from microdata," Journal of Public Economics, Elsevier, vol. 117(C), pages 1-14.
    6. Ibrahim Ahamada & Djamel Kirat, 2011. "The impact of the European Union Emission Trading Scheme on electricity generation," PSE-Ecole d'économie de Paris (Postprint) hal-00629900, HAL.
    7. Kirat, Djamel & Ahamada, Ibrahim, 2011. "The impact of the European Union emission trading scheme on the electricity-generation sector," Energy Economics, Elsevier, vol. 33(5), pages 995-1003, September.
    8. Fiona Burlig & Christopher Knittel & David Rapson & Mar Reguant & Catherine Wolfram, 2020. "Machine Learning from Schools about Energy Efficiency," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 7(6), pages 1181-1217.
    9. Pettersson, Fredrik & Söderholm, Patrik & Lundmark, Robert, 2012. "Fuel switching and climate and energy policies in the European power generation sector: A generalized Leontief model," Energy Economics, Elsevier, vol. 34(4), pages 1064-1073.
    10. Abrell, Jan & Rausch, Sebastian, 2016. "Cross-country electricity trade, renewable energy and European transmission infrastructure policy," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 87-113.
    11. J. Scott Holladay and Steven Soloway, 2016. "The Environmental Impacts of Fuel Switching Electricity Generators," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    12. Bretschger, Lucas & Lechthaler, Filippo & Rausch, Sebastian & Zhang, Lin, 2017. "Knowledge diffusion, endogenous growth, and the costs of global climate policy," European Economic Review, Elsevier, vol. 93(C), pages 47-72.
    13. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    14. Rutherford, Thomas F., 1995. "Extension of GAMS for complementarity problems arising in applied economic analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 19(8), pages 1299-1324, November.
    15. Meredith Fowlie & Stephen P. Holland & Erin T. Mansur, 2012. "What Do Emissions Markets Deliver and to Whom? Evidence from Southern California's NOx Trading Program," American Economic Review, American Economic Association, vol. 102(2), pages 965-993, April.
    16. repec:dau:papers:123456789/11055 is not listed on IDEAS
    17. Chi Kong Chyong, Bowei Guo, and David Newbery, 2020. "The Impact of a Carbon Tax on the CO2 Emissions Reduction of Wind," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    18. Joshua Linn & Kristen McCormack, 2019. "The roles of energy markets and environmental regulation in reducing coal‐fired plant profits and electricity sector emissions," RAND Journal of Economics, RAND Corporation, vol. 50(4), pages 733-767, December.
    19. Holladay, J. Scott & LaRiviere, Jacob, 2017. "The impact of cheap natural gas on marginal emissions from electricity generation and implications for energy policy," Journal of Environmental Economics and Management, Elsevier, vol. 85(C), pages 205-227.
    20. Erik D. Delarue & A. Denny Ellerman & William D. D'Haeseleer, 2010. "Short-Term Co2abatement In The European Power Sector: 2005–2006," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 1(02), pages 113-133.
    21. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    22. Lawrence H. Goulder & Ian W. H. Parry, 2008. "Instrument Choice in Environmental Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(2), pages 152-174, Summer.
    23. Mikhail Golosov & John Hassler & Per Krusell & Aleh Tsyvinski, 2014. "Optimal Taxes on Fossil Fuel in General Equilibrium," Econometrica, Econometric Society, vol. 82(1), pages 41-88, January.
    24. Christopher R. Knittel & Konstantinos Metaxoglou & Andre Trindade, 2015. "Natural Gas Prices and Coal Displacement: Evidence from Electricity Markets," NBER Working Papers 21627, National Bureau of Economic Research, Inc.
    25. Ralf Martin & Mirabelle Muûls & Ulrich J. Wagner, 2016. "The Impact of the European Union Emissions Trading Scheme on Regulated Firms: What Is the Evidence after Ten Years?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 129-148.
    26. Christophe McGlade & Paul Ekins, 2015. "The geographical distribution of fossil fuels unused when limiting global warming to 2 °C," Nature, Nature, vol. 517(7533), pages 187-190, January.
    27. Ibrahim Ahamada & Djamel Kirat, 2011. "The impact of the European Union Emission Trading Scheme on electricity generation," Post-Print hal-00629900, HAL.
    28. Patrick Bajari & Denis Nekipelov & Stephen P. Ryan & Miaoyu Yang, 2015. "Machine Learning Methods for Demand Estimation," American Economic Review, American Economic Association, vol. 105(5), pages 481-485, May.
    29. Jonas Peters & Peter Bühlmann & Nicolai Meinshausen, 2016. "Causal inference by using invariant prediction: identification and confidence intervals," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 947-1012, November.
    30. Gilbert E. Metcalf, 2009. "Market-Based Policy Options to Control U.S. Greenhouse Gas Emissions," Journal of Economic Perspectives, American Economic Association, vol. 23(2), pages 5-27, Spring.
    31. Delarue, E.D. & Ellerman, A.D. & D'haeseleer, W.D., 2010. "Robust MACCs? The topography of abatement by fuel switching in the European power sector," Energy, Elsevier, vol. 35(3), pages 1465-1475.
    32. Rausch, Sebastian & Mowers, Matthew, 2014. "Distributional and efficiency impacts of clean and renewable energy standards for electricity," Resource and Energy Economics, Elsevier, vol. 36(2), pages 556-585.
    33. Klepper, Gernot & Peterson, Sonja, 2006. "Marginal abatement cost curves in general equilibrium: The influence of world energy prices," Resource and Energy Economics, Elsevier, vol. 28(1), pages 1-23, January.
    34. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    35. Julien Chevallier & Erik Delarue & Emeric Lujan & William D'haeseleer;, 2012. "A counterfactual simulation exercise of CO 2 emissions abatement through fuel-switching in the UK (2008-2012)," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 35(5), pages 311-331.
    36. Joseph A. Cullen & Erin T. Mansur, 2017. "Inferring Carbon Abatement Costs in Electricity Markets: A Revealed Preference Approach Using the Shale Revolution," American Economic Journal: Economic Policy, American Economic Association, vol. 9(3), pages 106-133, August.
    37. John Weyant & Brigitte Knopf & Enrica De Cian & Ilkka Keppo & Detlef P. van Vuuren, 2013. "Introduction To The Emf28 Study On Scenarios For Transforming The European Energy System," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-3.
    38. World Bank & Ecofys, "undated". "State and Trends of Carbon Pricing 2018," World Bank Publications - Reports 29687, The World Bank Group.
    39. Linn, Joshua & Anna Muehlenbachs, Lucija & Wang, Yshuang, 2014. "How Do Natural Gas Prices Affect Electricity Consumers and the Environment?," RFF Working Paper Series dp-14-19, Resources for the Future.
    40. Ibrahim Ahamada & Djamel Kirat, 2011. "The impact of the European Union Emission Trading Scheme on electricity generation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00629900, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jicheng & Lu, Yunyuan, 2022. "Research on the evaluation of China's photovoltaic policy driving ability under the background of carbon neutrality," Energy, Elsevier, vol. 250(C).
    2. Lina Liu & Yunyun Zhang & Bei Liu & Pishi Xiu & Lipeng Sun, 2022. "How to Achieve Carbon Neutrality: From the Perspective of Innovative City Pilot Policy in China," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
    3. Mireille Chiroleu-Assouline, 2022. "Rendre acceptable la nécessaire taxation du carbone. Quelles pistes pour la France ?," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(1), pages 15-53.
    4. Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario, 2023. "Carbon pricing and emissions: Causal effects of Britain's carbon tax," Energy Economics, Elsevier, vol. 121(C).
    5. Ankitha Nandipura Prasanna & Priscila Grecov & Angela Dieyu Weng & Christoph Bergmeir, 2022. "Causal Effect Estimation with Global Probabilistic Forecasting: A Case Study of the Impact of Covid-19 Lockdowns on Energy Demand," Papers 2209.08885, arXiv.org, revised Oct 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leroutier, Marion, 2022. "Carbon pricing and power sector decarbonization: Evidence from the UK," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    2. Lu, Yunguo & Zhang, Lin, 2022. "National mitigation policy and the competitiveness of Chinese firms," Energy Economics, Elsevier, vol. 109(C).
    3. Gavard, Claire & Kirat, Djamel, 2018. "Flexibility in the market for international carbon credits and price dynamics difference with European allowances," Energy Economics, Elsevier, vol. 76(C), pages 504-518.
    4. Abrell, Jan & Rausch, Sebastian & Streitberger, Clemens, 2019. "The economics of renewable energy support," Journal of Public Economics, Elsevier, vol. 176(C), pages 94-117.
    5. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2019. "Carbon abatement with renewables: Evaluating wind and solar subsidies in Germany and Spain," Journal of Public Economics, Elsevier, vol. 169(C), pages 172-202.
    6. Jan Abrell & Mirjam Kosch & Sebastian Rausch, 2019. "How Effective Was the UK Carbon Tax? — A Machine Learning Approach to Policy Evaluation," CER-ETH Economics working paper series 19/317, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    7. Jan Abrell & Mirjam Kosch & Sebastian Rausch, 2017. "The Economic Cost of Carbon Abatement with Renewable Energy Policies," CER-ETH Economics working paper series 17/273, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    8. Li, Y.P. & Huang, G.H. & Li, M.W., 2014. "An integrated optimization modeling approach for planning emission trading and clean-energy development under uncertainty," Renewable Energy, Elsevier, vol. 62(C), pages 31-46.
    9. Teng, Fei & Wang, Xin & Zhiqiang, LV, 2014. "Introducing the emissions trading system to China’s electricity sector: Challenges and opportunities," Energy Policy, Elsevier, vol. 75(C), pages 39-45.
    10. Marit Klemetsen & Knut Einar Rosendahl & Anja Lund Jakobsen, 2020. "The Impacts Of The Eu Ets On Norwegian Plants’ Environmental And Economic Performance," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-32, February.
    11. Landis, Florian & Fredriksson, Gustav & Rausch, Sebastian, 2021. "Between- and within-country distributional impacts from harmonizing carbon prices in the EU," Energy Economics, Elsevier, vol. 103(C).
    12. Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario, 2023. "Carbon pricing and emissions: Causal effects of Britain's carbon tax," Energy Economics, Elsevier, vol. 121(C).
    13. Frieder Mokinski & Nikolas Wölfing, 2014. "The effect of regulatory scrutiny: Asymmetric cost pass-through in power wholesale and its end," Journal of Regulatory Economics, Springer, vol. 45(2), pages 175-193, April.
    14. Marin, Giovanni & Vona, Francesco, 2021. "The impact of energy prices on socioeconomic and environmental performance: Evidence from French manufacturing establishments, 1997–2015," European Economic Review, Elsevier, vol. 135(C).
    15. Rübbelke, Dirk & Vögele, Stefan, 2013. "Effects of carbon dioxide capture and storage in Germany on European electricity exchange and welfare," Energy Policy, Elsevier, vol. 59(C), pages 582-588.
    16. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2020. "Decompositions and Policy Consequences of an Extraordinary Decline in Air Pollution from Electricity Generation," American Economic Journal: Economic Policy, American Economic Association, vol. 12(4), pages 244-274, November.
    17. Wang, Xue-Chao & Klemeš, Jiří Jaromír & Wang, Yutao & Foley, Aoife & Huisingh, Donald & Guan, Dabo & Dong, Xiaobin & Varbanov, Petar Sabev, 2021. "Unsustainable imbalances and inequities in Carbon-Water-Energy flows across the EU27," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    18. Hanif, Waqas & Arreola Hernandez, Jose & Mensi, Walid & Kang, Sang Hoon & Uddin, Gazi Salah & Yoon, Seong-Min, 2021. "Nonlinear dependence and connectedness between clean/renewable energy sector equity and European emission allowance prices," Energy Economics, Elsevier, vol. 101(C).
    19. Kasper Vrolijk & Misato Sato, 2023. "Quasi-Experimental Evidence on Carbon Pricing," The World Bank Research Observer, World Bank, vol. 38(2), pages 213-248.
    20. Harding, Matthew & Kettler, Kyle & Lamarche, Carlos & Ma, Lala, 2023. "The (alleged) environmental and social benefits of dynamic pricing," Journal of Economic Behavior & Organization, Elsevier, vol. 205(C), pages 574-593.

    More about this item

    JEL classification:

    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:zewdip:21039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zemande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.