IDEAS home Printed from https://ideas.repec.org/a/aea/aejpol/v12y2020i4p244-74.html
   My bibliography  Save this article

Decompositions and Policy Consequences of an Extraordinary Decline in Air Pollution from Electricity Generation

Author

Listed:
  • Stephen P. Holland
  • Erin T. Mansur
  • Nicholas Z. Muller
  • Andrew J. Yates

Abstract

Using integrated assessment models, we calculate the economic value of the extraordinary decline in emissions from US power plants. Annual local and global air pollution damages fell from 245 to 133 billion USD over 2010–2017. Decomposition shows changes in emission rates and generation shares among coal and gas plants account for more of this decline than changes in renewable generation, electricity consumption, and damage valuations. Econometrically estimated marginal damages declined in the East from 8.6 to 6 cents per kWh. Marginal damages increased slightly in the West and Texas. These estimates indicate electric vehicles are now cleaner on average than gasoline vehicles.

Suggested Citation

  • Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2020. "Decompositions and Policy Consequences of an Extraordinary Decline in Air Pollution from Electricity Generation," American Economic Journal: Economic Policy, American Economic Association, vol. 12(4), pages 244-274, November.
  • Handle: RePEc:aea:aejpol:v:12:y:2020:i:4:p:244-74
    DOI: 10.1257/pol.20190390
    as

    Download full text from publisher

    File URL: https://www.aeaweb.org/doi/10.1257/pol.20190390
    Download Restriction: no

    File URL: https://doi.org/10.3886/E112172V1
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/pol.20190390.appx
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/pol.20190390.ds
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.

    File URL: https://libkey.io/10.1257/pol.20190390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102, Elsevier.
    2. Joseph S. Shapiro & Reed Walker, 2018. "Why Is Pollution from US Manufacturing Declining? The Roles of Environmental Regulation, Productivity, and Trade," American Economic Review, American Economic Association, vol. 108(12), pages 3814-3854, December.
    3. Arik Levinson, 2015. "A Direct Estimate of the Technique Effect: Changes in the Pollution Intensity of US Manufacturing, 1990-2008," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 43-56.
    4. Werner Antweiler & Brian R. Copeland & M. Scott Taylor, 2001. "Is Free Trade Good for the Environment?," American Economic Review, American Economic Association, vol. 91(4), pages 877-908, September.
    5. Arik Levinson, 2009. "Technology, International Trade, and Pollution from US Manufacturing," American Economic Review, American Economic Association, vol. 99(5), pages 2177-2192, December.
    6. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2019. "Distributional Effects of Air Pollution from Electric Vehicle Adoption," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(S1), pages 65-94.
    7. Nicholas Z. Muller, 2014. "Toward the Measurement of Net Economic Welfare: Air Pollution Damage in the US National Accounts–2002, 2005, 2008," NBER Chapters, in: Measuring Economic Sustainability and Progress, pages 429-459, National Bureau of Economic Research, Inc.
    8. Severin Borenstein & James B. Bushnell, 2022. "Do Two Electricity Pricing Wrongs Make a Right? Cost Recovery, Externalities, and Efficiency," American Economic Journal: Economic Policy, American Economic Association, vol. 14(4), pages 80-110, November.
    9. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    10. Viscusi, W Kip & Aldy, Joseph E, 2003. "The Value of a Statistical Life: A Critical Review of Market Estimates throughout the World," Journal of Risk and Uncertainty, Springer, vol. 27(1), pages 5-76, August.
    11. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    12. Matthew J. Kotchen & Erin T. Mansur, 2016. "Correspondence: Reassessing the contribution of natural gas to US CO2 emission reductions since 2007," Nature Communications, Nature, vol. 7(1), pages 1-3, April.
    13. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    14. Harrison Fell & Daniel T. Kaffine, 2018. "The Fall of Coal: Joint Impacts of Fuel Prices and Renewables on Generation and Emissions," American Economic Journal: Economic Policy, American Economic Association, vol. 10(2), pages 90-116, May.
    15. Meredith Fowlie & Stephen P. Holland & Erin T. Mansur, 2012. "What Do Emissions Markets Deliver and to Whom? Evidence from Southern California's NOx Trading Program," American Economic Review, American Economic Association, vol. 102(2), pages 965-993, April.
    16. Joseph A. Cullen & Erin T. Mansur, 2017. "Inferring Carbon Abatement Costs in Electricity Markets: A Revealed Preference Approach Using the Shale Revolution," American Economic Journal: Economic Policy, American Economic Association, vol. 9(3), pages 106-133, August.
    17. Gilbert E. Metcalf, 2008. "An Empirical Analysis of Energy Intensity and Its Determinants at the State Level," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-26.
    18. Christopher R. Knittel & Konstantinos Metaxoglou & Andre Trindade, 2015. "Natural Gas Prices and Coal Displacement: Evidence from Electricity Markets," NBER Working Papers 21627, National Bureau of Economic Research, Inc.
    19. Ang, B. W. & Lee, S. Y., 1994. "Decomposition of industrial energy consumption : Some methodological and application issues," Energy Economics, Elsevier, vol. 16(2), pages 83-92, April.
    20. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2016. "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors," American Economic Review, American Economic Association, vol. 106(12), pages 3700-3729, December.
    21. Holladay, J. Scott & LaRiviere, Jacob, 2017. "The impact of cheap natural gas on marginal emissions from electricity generation and implications for energy policy," Journal of Environmental Economics and Management, Elsevier, vol. 85(C), pages 205-227.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harding, Matthew & Kettler, Kyle & Lamarche, Carlos & Ma, Lala, 2023. "The (alleged) environmental and social benefits of dynamic pricing," Journal of Economic Behavior & Organization, Elsevier, vol. 205(C), pages 574-593.
    2. LaPlue, Lawrence D., 2022. "Environmental consequences of natural gas wellhead pricing deregulation," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    3. Mao, Jie & Wang, Chunhua & Yin, Haitao, 2023. "Corporate responses to air quality regulation: Evidence from a regional environmental policy in China," Regional Science and Urban Economics, Elsevier, vol. 98(C).
    4. Linn, Joshua & Muehlenbachs, Lucija, 2018. "The heterogeneous impacts of low natural gas prices on consumers and the environment," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 1-28.
    5. Lawrence D. LaPlue & Christopher A. Erickson, 2020. "Outsourcing, trade, technology, and greenhouse gas emissions," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(2), pages 217-245, April.
    6. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    7. Doyle, Matthew & Fell, Harrison, 2018. "Fuel prices, restructuring, and natural gas plant operations," Resource and Energy Economics, Elsevier, vol. 52(C), pages 153-172.
    8. Jonathan T. Hawkins-Pierot & Katherine R. H. Wagner, 2022. "Technology Lock-In and Optimal Carbon Pricing," CESifo Working Paper Series 9762, CESifo.
    9. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    10. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2022. "How effective is carbon pricing?—A machine learning approach to policy evaluation," Journal of Environmental Economics and Management, Elsevier, vol. 112(C).
    11. Kenneth Gillingham & Marten Ovaere & Stephanie M. Weber, 2021. "Carbon Policy and the Emissions Implications of Electric Vehicles," NBER Working Papers 28620, National Bureau of Economic Research, Inc.
    12. Damien Dussaux & Francesco Vona & Antoine Dechezleprêtre, 2023. "Imported carbon emissions: Evidence from French manufacturing companies," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 56(2), pages 593-621, May.
    13. Michael Schymura & Andreas Löschel, 2012. "Trade and the Environment: An Application of the WIOD Database," EcoMod2012 3948, EcoMod.
    14. Jevan M. Cherniwchan & M. Scott Taylor, 2022. "International Trade and the Environment: Three Remaining Empirical Challenges," NBER Working Papers 30020, National Bureau of Economic Research, Inc.
    15. Nathaly M Rivera & Cristobal Ruiz Tagle, Elisheba Spiller, 2021. "The Health Benefits of Solar Power Generation: Evidence from Chile," Working Papers, Department of Economics 2021_04, University of São Paulo (FEA-USP).
    16. Jonathan T. Hawkins-Pierot & Katherine R. H. Wagner, 2023. "Technology Lock-In and Costs of Delayed Climate Policy," Working Papers 23-33, Center for Economic Studies, U.S. Census Bureau.
    17. Banie Naser Outchiri & Jie He, 2020. "Technical gap, trade partners and product mix evolution: how trading with China affects global CO2 emissions," Cahiers de recherche 20-07, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    18. Janjala Chirakijja & Seema Jayachandran & Pinchuan Ong, 2019. "Inexpensive Heating Reduces Winter Mortality," NBER Working Papers 25681, National Bureau of Economic Research, Inc.
    19. Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario, 2023. "Carbon pricing and emissions: Causal effects of Britain's carbon tax," Energy Economics, Elsevier, vol. 121(C).
    20. Liu, Mengdi & Zhang, Bing & Liao, Xianchun, 2022. "Can trade liberalization promote green production? Evidence from China's manufacturing enterprises," Journal of Asian Economics, Elsevier, vol. 79(C).

    More about this item

    JEL classification:

    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aejpol:v:12:y:2020:i:4:p:244-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.