IDEAS home Printed from https://ideas.repec.org/p/enp/wpaper/eprg1904.html
   My bibliography  Save this paper

The impact of a Carbon Tax on the CO2 emissions reduction of wind

Author

Listed:
  • Chi Kong Chyong

    (EPRG, University of Cambridge)

  • Bowei Guo

    (Faculty of Economics, University of Cambridge.)

  • David Newbery

    (EPRG, University of Cambridge.)

Abstract

Energy policy aims to reduce emissions at least long-run cost while ensuring reliability. Its efficacy depends on the cost of emissions reduced. Britain introduced an additional carbon tax (the Carbon Price Support, CPS) for fuels used to generate electricity that by 2015 added £18/t CO2, dramatically reducing the coal share from 41% in 2013 to 6% in 2018. Policies have both short and long-run impacts. Both need to be estimated to measure carbon savings. The paper shows how to measure the Marginal Displacement Factor (MDF, tonnes CO2 /MWh) for wind. The short-run MDF is estimated econometrically while the long-run MDF is calculated from a unit commitment model of the GB system in 2015. We examine counter-factual fuel and carbon price scenarios. The CPS lowered the short-run SR-MDF by 7% in 2015 but raised the long-run LR-MDF (for a 25% increase in wind capacity) by 18%. We discuss reasons for the modest differences in the SR and LR MDFs. The CPS raised the 2016 wholesale price by £6.22/MWh with impacts on interconnector trade.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Chi Kong Chyong & Bowei Guo & David Newbery, 2019. "The impact of a Carbon Tax on the CO2 emissions reduction of wind," Working Papers EPRG 1904, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
  • Handle: RePEc:enp:wpaper:eprg1904
    as

    Download full text from publisher

    File URL: https://www.jbs.cam.ac.uk/wp-content/uploads/2023/12/eprg-wp1904.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wheatley, Joseph, 2013. "Quantifying CO2 savings from wind power," Energy Policy, Elsevier, vol. 63(C), pages 89-96.
    2. Amor, Mourad Ben & Billette de Villemeur, Etienne & Pellat, Marie & Pineau, Pierre-Olivier, 2014. "Influence of wind power on hourly electricity prices and GHG (greenhouse gas) emissions: Evidence that congestion matters from Ontario zonal data," Energy, Elsevier, vol. 66(C), pages 458-469.
    3. González-Aparicio, I. & Zucker, A., 2015. "Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain," Applied Energy, Elsevier, vol. 159(C), pages 334-349.
    4. Staffell, Iain, 2017. "Measuring the progress and impacts of decarbonising British electricity," Energy Policy, Elsevier, vol. 102(C), pages 463-475.
    5. Amor, Mourad Ben & Billette de Villemeur, Etienne & Pellat, Marie & Pineau, Pierre-Olivier, 2014. "Influence of wind power on hourly electricity prices and GHG emissions: Evidence that congestion matters from Ontario zonal data," MPRA Paper 53630, University Library of Munich, Germany.
    6. Thomson, R. Camilla & Harrison, Gareth P. & Chick, John P., 2017. "Marginal greenhouse gas emissions displacement of wind power in Great Britain," Energy Policy, Elsevier, vol. 101(C), pages 201-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Bowei & Castagneto Gissey, Giorgio, 2021. "Cost pass-through in the British wholesale electricity market," Energy Economics, Elsevier, vol. 102(C).
    2. Leroutier, Marion, 2022. "Carbon pricing and power sector decarbonization: Evidence from the UK," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    3. Xu, Qingyu & Hobbs, Benjamin F., 2021. "Economic efficiency of alternative border carbon adjustment schemes: A case study of California Carbon Pricing and the Western North American power market," Energy Policy, Elsevier, vol. 156(C).
    4. Hu, Haisheng & Dong, Wanhao & Zhou, Qian, 2021. "A comparative study on the environmental and economic effects of a resource tax and carbon tax in China: Analysis based on the computable general equilibrium model," Energy Policy, Elsevier, vol. 156(C).
    5. David Newbery, 2021. "Strengths and weaknesses of the British market model," Chapters, in: Jean-Michel Glachant & Paul L. Joskow & Michael G. Pollitt (ed.), Handbook on Electricity Markets, chapter 6, pages 156-181, Edward Elgar Publishing.
    6. Bowei Guo & Giorgio Castagneto Gissey, 2019. "Cost Pass-through in the British Wholesale Electricity Market: Implications of Brexit and the ETS reform," Working Papers EPRG1937, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    7. Chyong, Chi Kong & Newbery, David, 2022. "A unit commitment and economic dispatch model of the GB electricity market – Formulation and application to hydro pumped storage," Energy Policy, Elsevier, vol. 170(C).
    8. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2022. "How effective is carbon pricing?—A machine learning approach to policy evaluation," Journal of Environmental Economics and Management, Elsevier, vol. 112(C).
    9. Xu, Q. & Hobbs, B., 2020. "Economic Efficiency of Alternative Border Carbon Adjustment Schemes: A Case Study of California Carbon Pricing and the Western North American Power Market," Cambridge Working Papers in Economics 20109, Faculty of Economics, University of Cambridge.
    10. Jia, Zhijie & Lin, Boqiang, 2020. "Rethinking the choice of carbon tax and carbon trading in China," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    11. Marion Leroutier, 2021. "Carbon Pricing and Power Sector Decarbonisation: Evidence from the UK," Working Papers halshs-03265636, HAL.
    12. Marion Leroutier, 2021. "Carbon Pricing and Power Sector Decarbonisation: Evidence from the UK," CIRED Working Papers halshs-03265636, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliveira, Tiago & Varum, Celeste & Botelho, Anabela, 2019. "Econometric modeling of CO2 emissions abatement: Comparing alternative approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 310-322.
    2. Bent Jesper Christensen & Nabanita Datta Gupta & Paolo Santucci de Magistris, 2021. "Measuring the impact of clean energy production on CO2 abatement in Denmark: Upper bound estimation and forecasting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 118-149, January.
    3. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "Carbon dioxide (CO2) emissions from electricity: The influence of the North Atlantic Oscillation," Applied Energy, Elsevier, vol. 161(C), pages 487-496.
    4. Carlini, Federico & Christensen, Bent Jesper & Datta Gupta, Nabanita & Santucci de Magistris, Paolo, 2023. "Climate, wind energy, and CO2 emissions from energy production in Denmark," Energy Economics, Elsevier, vol. 125(C).
    5. Savelli, Iacopo & Hardy, Jeffrey & Hepburn, Cameron & Morstyn, Thomas, 2022. "Putting wind and solar in their place: Internalising congestion and other system-wide costs with enhanced contracts for difference in Great Britain," Energy Economics, Elsevier, vol. 113(C).
    6. Clancy, J.M. & Gaffney, F. & Deane, J.P. & Curtis, J. & Ó Gallachóir, B.P., 2015. "Fossil fuel and CO2 emissions savings on a high renewable electricity system – A single year case study for Ireland," Energy Policy, Elsevier, vol. 83(C), pages 151-164.
    7. Oliveira, Tiago & Varum, Celeste & Botelho, Anabela, 2019. "Wind power and CO2 emissions in the Irish market," Energy Economics, Elsevier, vol. 80(C), pages 48-58.
    8. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    9. Harrison Fell & Daniel T. Kaffine, 2014. "A one-two punch: Joint effects of natural gas abundance and renewables on coal-fired power plants," Working Papers 2014-10, Colorado School of Mines, Division of Economics and Business.
    10. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland," Energy Economics, Elsevier, vol. 58(C), pages 186-198.
    11. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    12. Vika Koban, 2017. "The impact of market coupling on Hungarian and Romanian electricity markets: Evidence from the regime-switching model," Energy & Environment, , vol. 28(5-6), pages 621-638, September.
    13. Bahramian, Pejman & Jenkins, Glenn P. & Milne, Frank, 2021. "The displacement impacts of wind power electricity generation: Costly lessons from Ontario," Energy Policy, Elsevier, vol. 152(C).
    14. Arjmand, Reza & Rahimiyan, Morteza, 2016. "Impact of spatio-temporal correlation of wind production on clearing outcomes of a competitive pool market," Renewable Energy, Elsevier, vol. 86(C), pages 216-227.
    15. Brancucci Martinez-Anido, Carlo & Brinkman, Greg & Hodge, Bri-Mathias, 2016. "The impact of wind power on electricity prices," Renewable Energy, Elsevier, vol. 94(C), pages 474-487.
    16. Godin, Frédéric & Ibrahim, Zinatu, 2021. "An analysis of electricity congestion price patterns in North America," Energy Economics, Elsevier, vol. 102(C).
    17. Mahmood Hosseini Imani & Ettore Bompard & Pietro Colella & Tao Huang, 2021. "Impact of Wind and Solar Generation on the Italian Zonal Electricity Price," Energies, MDPI, vol. 14(18), pages 1-26, September.
    18. Joos, Michael & Staffell, Iain, 2018. "Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 45-65.
    19. Pimm, Andrew J. & Palczewski, Jan & Barbour, Edward R. & Cockerill, Tim T., 2021. "Using electricity storage to reduce greenhouse gas emissions," Applied Energy, Elsevier, vol. 282(PA).
    20. Rizal Taufiq Fauzi & Patrick Lavoie & Luca Sorelli & Mohammad Davoud Heidari & Ben Amor, 2019. "Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 11(3), pages 1-17, January.

    More about this item

    Keywords

    Carbon pricing; fuel mix; wind; marginal displacement factors; unit commitment model; econometrics;
    All these keywords.

    JEL classification:

    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:enp:wpaper:eprg1904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ruth Newman (email available below). General contact details of provider: https://edirc.repec.org/data/jicamuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.