IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i3p636-d200834.html
   My bibliography  Save this article

Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment

Author

Listed:
  • Rizal Taufiq Fauzi

    (Department of Civil Engineering, Interdisciplinary Research Laboratory on Sustainable Engineering and Ecodesign (LIRIDE), University of Sherbrooke, J1K 2R1 Sherbrooke, Quebec, Canada)

  • Patrick Lavoie

    (FPInnovations, G1P 4R4 Quebec City, Quebec, Canada)

  • Luca Sorelli

    (Department of Civil and Water Engineering, University of Laval, G1V 0A6 Quebec City, Quebec, Canada)

  • Mohammad Davoud Heidari

    (Department of Civil Engineering, Interdisciplinary Research Laboratory on Sustainable Engineering and Ecodesign (LIRIDE), University of Sherbrooke, J1K 2R1 Sherbrooke, Quebec, Canada)

  • Ben Amor

    (Department of Civil Engineering, Interdisciplinary Research Laboratory on Sustainable Engineering and Ecodesign (LIRIDE), University of Sherbrooke, J1K 2R1 Sherbrooke, Quebec, Canada)

Abstract

Sustainability decision making is a complex task for policy makers, considering the possible unseen consequences it may entail. With a broader scope covering environmental, economic, and social aspects, Life Cycle Sustainability Assessment (LCSA) is a promising holistic method to deal with that complexity. However, to date, this method is limited to the hotspot analysis of a product, service, or system, and hence only assesses direct impacts and overlooks the indirect ones (or consequences). This critical literature review aims to explore the challenges and the research gaps related to the integration of three methods in LCSA representing three pillars of sustainability: (Environmental) Life Cycle Assessment (LCA), Life Cycle Costing (LCC), and Social Life Cycle Assessment (S-LCA). The challenges and the research gaps that appear when pairing two of these tools with each other are identified and discussed, i.e., the temporal issues, different perspectives, the indirect consequences, etc. Although this study does not aim to remove the shadows in LCSA methods, critical research gaps are identified in order to be addressed in future works. More case studies are also recommended for a deeper understanding of methodological trade-offs that might happen, especially when dealing with the consequential perspective.

Suggested Citation

  • Rizal Taufiq Fauzi & Patrick Lavoie & Luca Sorelli & Mohammad Davoud Heidari & Ben Amor, 2019. "Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 11(3), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:636-:d:200834
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/3/636/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/3/636/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2016. "Uncertainty-embedded dynamic life cycle sustainability assessment framework: An ex-ante perspective on the impacts of alternative vehicle options," Energy, Elsevier, vol. 112(C), pages 715-728.
    2. Blanca Corona & Kossara P. Bozhilova†Kisheva & Stig I. Olsen & Guillermo San Miguel, 2017. "Social Life Cycle Assessment of a Concentrated Solar Power Plant in Spain: A Methodological Proposal," Journal of Industrial Ecology, Yale University, vol. 21(6), pages 1566-1577, December.
    3. Amor, Mourad Ben & Billette de Villemeur, Etienne & Pellat, Marie & Pineau, Pierre-Olivier, 2014. "Influence of wind power on hourly electricity prices and GHG (greenhouse gas) emissions: Evidence that congestion matters from Ontario zonal data," Energy, Elsevier, vol. 66(C), pages 458-469.
    4. Nuri Cihat Onat & Murat Kucukvar & Anthony Halog & Scott Cloutier, 2017. "Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives," Sustainability, MDPI, vol. 9(5), pages 1-25, April.
    5. Matthias Finkbeiner & Erwin M. Schau & Annekatrin Lehmann & Marzia Traverso, 2010. "Towards Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 2(10), pages 1-14, October.
    6. Pasquale Marcello Falcone & Enrica Imbert, 2018. "Social Life Cycle Approach as a Tool for Promoting the Market Uptake of Bio-Based Products from a Consumer Perspective," Sustainability, MDPI, vol. 10(4), pages 1-22, March.
    7. Ruqun Wu & Dan Yang & Jiquan Chen, 2014. "Social Life Cycle Assessment Revisited," Sustainability, MDPI, vol. 6(7), pages 1-27, July.
    8. Navid Hossaini & Bahareh Reza & Sharmin Akhtar & Rehan Sadiq & Kasun Hewage, 2015. "AHP based life cycle sustainability assessment (LCSA) framework: a case study of six storey wood frame and concrete frame buildings in Vancouver," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 58(7), pages 1217-1241, July.
    9. Anthony Halog & Yosef Manik, 2011. "Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 3(2), pages 1-31, February.
    10. Amor, Mourad Ben & Gaudreault, Caroline & Pineau, Pierre-Olivier & Samson, Réjean, 2014. "Implications of integrating electricity supply dynamics into life cycle assessment: A case study of renewable distributed generation," Renewable Energy, Elsevier, vol. 69(C), pages 410-419.
    11. Michael Martin & Frida Røyne & Tomas Ekvall & Åsa Moberg, 2018. "Life Cycle Sustainability Evaluations of Bio-based Value Chains: Reviewing the Indicators from a Swedish Perspective," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    12. Rafiaani, Parisa & Kuppens, Tom & Dael, Miet Van & Azadi, Hossein & Lebailly, Philippe & Passel, Steven Van, 2018. "Social sustainability assessments in the biobased economy: Towards a systemic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1839-1853.
    13. Anand, Chirjiv Kaur & Amor, Ben, 2017. "Recent developments, future challenges and new research directions in LCA of buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 408-416.
    14. Amor, Mourad Ben & Billette de Villemeur, Etienne & Pellat, Marie & Pineau, Pierre-Olivier, 2014. "Influence of wind power on hourly electricity prices and GHG emissions: Evidence that congestion matters from Ontario zonal data," MPRA Paper 53630, University Library of Munich, Germany.
    15. Yu-Che Tseng & Yuh-Ming Lee & Shih-Jung Liao, 2017. "An Integrated Assessment Framework of Offshore Wind Power Projects Applying Equator Principles and Social Life Cycle Assessment," Sustainability, MDPI, vol. 9(10), pages 1-17, October.
    16. Schluchter Wolf & Rybaczewska- Błażejowska Magdalena, 2012. "Life cycle sustainability assessment of municipal waste management systems," Management, Sciendo, vol. 16(2), pages 361-372, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christina Wulf & Jasmin Werker & Christopher Ball & Petra Zapp & Wilhelm Kuckshinrichs, 2019. "Review of Sustainability Assessment Approaches Based on Life Cycles," Sustainability, MDPI, vol. 11(20), pages 1-43, October.
    2. Hannah Karlewski & Annekatrin Lehmann & Klaus Ruhland & Matthias Finkbeiner, 2019. "A Practical Approach for Social Life Cycle Assessment in the Automotive Industry," Resources, MDPI, vol. 8(3), pages 1-60, August.
    3. Nuri Cihat Onat & Murat Kucukvar & Anthony Halog & Scott Cloutier, 2017. "Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives," Sustainability, MDPI, vol. 9(5), pages 1-25, April.
    4. Pasquale Marcello Falcone & Sara González García & Enrica Imbert & Lucía Lijó & María Teresa Moreira & Almona Tani & Valentina Elena Tartiu & Piergiuseppe Morone, 2019. "Transitioning towards the bio‐economy: Assessing the social dimension through a stakeholder lens," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(5), pages 1135-1153, September.
    5. Jörg Schweinle & Natalia Geng & Susanne Iost & Holger Weimar & Dominik Jochem, 2020. "Monitoring Sustainability Effects of the Bioeconomy: A Material Flow Based Approach Using the Example of Softwood Lumber and Its Core Product Epal 1 Pallet," Sustainability, MDPI, vol. 12(6), pages 1-27, March.
    6. Eleni Iacovidou & Jonathan Busch & John N. Hahladakis & Helen Baxter & Kok Siew Ng & Ben M. J. Herbert, 2017. "A Parameter Selection Framework for Sustainability Assessment," Sustainability, MDPI, vol. 9(9), pages 1-18, August.
    7. Malaquias Zildo António Tsambe & Cássio Florisbal de Almeida & Cássia Maria Lie Ugaya & Luiz Fernando de Abreu Cybis, 2021. "Application of Life Cycle Sustainability Assessment to Used Lubricant Oil Management in South Brazilian Region," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    8. Alberto Bezama & Carlo Ingrao & Sinéad O’Keeffe & Daniela Thrän, 2019. "Resources, Collaborators, and Neighbors: The Three-Pronged Challenge in the Implementation of Bioeconomy Regions," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    9. Onat, Nuri Cihat & Kucukvar, Murat & Aboushaqrah, Nour N.M. & Jabbar, Rateb, 2019. "How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar," Applied Energy, Elsevier, vol. 250(C), pages 461-477.
    10. Esteban Lopez-Arboleda & Alfonso T. Sarmiento & Laura M. Cardenas, 2019. "Systematic Review of Integrated Sustainable Transportation Models for Electric Passenger Vehicle Diffusion," Sustainability, MDPI, vol. 11(9), pages 1-19, April.
    11. Ricardo J. Bonilla-Alicea & Katherine Fu, 2019. "Systematic Map of the Social Impact Assessment Field," Sustainability, MDPI, vol. 11(15), pages 1-30, July.
    12. María Jesús Muñoz-Torres & María Ángeles Fernández-Izquierdo & Juana M. Rivera-Lirio & Idoya Ferrero-Ferrero & Elena Escrig-Olmedo & José Vicente Gisbert-Navarro & María Chiara Marullo, 2018. "An Assessment Tool to Integrate Sustainability Principles into the Global Supply Chain," Sustainability, MDPI, vol. 10(2), pages 1-20, February.
    13. Martina Zimek & Andreas Schober & Claudia Mair & Rupert J. Baumgartner & Tobias Stern & Manfred Füllsack, 2019. "The Third Wave of LCA as the “Decade of Consolidation”," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    14. Yahong Dong & Peng Liu & Md. Uzzal Hossain, 2023. "Life Cycle Sustainability Assessment of Building Construction: A Case Study in China," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
    15. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    16. Datu Buyung Agusdinata & Wenjuan Liu & Sinta Sulistyo & Philippe LeBillon & Je'anne Wegner, 2023. "Evaluating sustainability impacts of critical mineral extractions: Integration of life cycle sustainability assessment and SDGs frameworks," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 746-759, June.
    17. Harrison Fell & Daniel T. Kaffine, 2014. "A one-two punch: Joint effects of natural gas abundance and renewables on coal-fired power plants," Working Papers 2014-10, Colorado School of Mines, Division of Economics and Business.
    18. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland," Energy Economics, Elsevier, vol. 58(C), pages 186-198.
    19. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    20. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:636-:d:200834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.