IDEAS home Printed from https://ideas.repec.org/a/taf/jenpmg/v58y2015i7p1217-1241.html
   My bibliography  Save this article

AHP based life cycle sustainability assessment (LCSA) framework: a case study of six storey wood frame and concrete frame buildings in Vancouver

Author

Listed:
  • Navid Hossaini
  • Bahareh Reza
  • Sharmin Akhtar
  • Rehan Sadiq
  • Kasun Hewage

Abstract

Construction and building industry is in dire need for developing sustainability assessment frameworks that can evaluate and integrate related environmental and socioeconomic impacts. This paper discusses an analytic hierarchy process (AHP) based sustainability evaluation framework for mid-rise residential buildings based on a broad range of environmental and socioeconomic criteria. A cradle to grave life cycle assessment technique was applied to identify, classify, and assess triple bottom line (TBL) sustainability performance indicators of buildings. Then, the AHP was applied to aggregate the impacts into a unified sustainability index. The framework is demonstrated through a case study to investigate two six storey structural systems (i.e. concrete and wood) in Vancouver, Canada. The results of this paper show that the environmental performance of a building in Canada, even in regions with milder weather such as Vancouver, is highly dependent on service life energy, rather than structural materials.

Suggested Citation

  • Navid Hossaini & Bahareh Reza & Sharmin Akhtar & Rehan Sadiq & Kasun Hewage, 2015. "AHP based life cycle sustainability assessment (LCSA) framework: a case study of six storey wood frame and concrete frame buildings in Vancouver," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 58(7), pages 1217-1241, July.
  • Handle: RePEc:taf:jenpmg:v:58:y:2015:i:7:p:1217-1241
    DOI: 10.1080/09640568.2014.920704
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/09640568.2014.920704
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09640568.2014.920704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Borjesson, Pal & Gustavsson, Leif, 2000. "Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives," Energy Policy, Elsevier, vol. 28(9), pages 575-588, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghada Elshafei & Dušan Katunský & Martina Zeleňáková & Abdelazim Negm, 2022. "Opportunities for Using Analytical Hierarchy Process in Green Building Optimization," Energies, MDPI, vol. 15(12), pages 1-24, June.
    2. Christina Wulf & Jasmin Werker & Christopher Ball & Petra Zapp & Wilhelm Kuckshinrichs, 2019. "Review of Sustainability Assessment Approaches Based on Life Cycles," Sustainability, MDPI, vol. 11(20), pages 1-43, October.
    3. Nuri Cihat Onat & Murat Kucukvar & Anthony Halog & Scott Cloutier, 2017. "Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives," Sustainability, MDPI, vol. 9(5), pages 1-25, April.
    4. Kotagodahetti, Ravihari & Hewage, Kasun & Karunathilake, Hirushie & Sadiq, Rehan, 2021. "Evaluating carbon capturing strategies for emissions reduction in community energy systems: A life cycle thinking approach," Energy, Elsevier, vol. 232(C).
    5. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.
    6. Janaina M. de A. Dias & Eduardo G. Salgado & Sandro Barbosa & Augusto D. Alvarenga & Jean M. S. Lira, 2017. "Assessment of the Sustainability of Countries at Worldwide," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 7(4), pages 51-64, December.
    7. Paulo Peças & Lenin John & Inês Ribeiro & António J. Baptista & Sara M. Pinto & Rui Dias & Juan Henriques & Marco Estrela & André Pilastri & Fernando Cunha, 2023. "Holistic Framework to Data-Driven Sustainability Assessment," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    8. Eduardo J. P. Martin & Deborah S. B. L. Oliveira & Luiza S. B. L. Oliveira & Barbara S. Bezerra, 2023. "An Integrated Framework for Environmental and Social Life Cycle Assessments in PET Bottle Waste Management: A Case Study in Brazil," Waste, MDPI, vol. 1(3), pages 1-16, August.
    9. Ghazanfar Ali Anwar & Mudasir Hussain & Muhammad Zeshan Akber & Mustesin Ali Khan & Aatif Ali Khan, 2023. "Sustainability-Oriented Optimization and Decision Making of Community Buildings under Seismic Hazard," Sustainability, MDPI, vol. 15(5), pages 1-21, March.
    10. Xu’anzhi Chen & Shu Su & Jingfeng Yuan & Jiaming Li & Feng Lou & Qinfang Wang, 2023. "Analyzing the Environmental, Economic, and Social Sustainability of Prefabricated Components: Modeling and Case Study," Sustainability, MDPI, vol. 16(1), pages 1, December.
    11. Muhammad Ansori Nasution & Ayu Wulandari & Tofael Ahamed & Ryozo Noguchi, 2020. "Alternative POME Treatment Technology in the Implementation of Roundtable on Sustainable Palm Oil, Indonesian Sustainable Palm Oil (ISPO), and Malaysian Sustainable Palm Oil (MSPO) Standards Using LCA," Sustainability, MDPI, vol. 12(10), pages 1-16, May.
    12. Dušan M. Milošević & Mimica R. Milošević & Dušan J. Simjanović, 2020. "Implementation of Adjusted Fuzzy AHP Method in the Assessment for Reuse of Industrial Buildings," Mathematics, MDPI, vol. 8(10), pages 1-24, October.
    13. Yahong Dong & Peng Liu & Md. Uzzal Hossain, 2023. "Life Cycle Sustainability Assessment of Building Construction: A Case Study in China," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
    14. Rizal Taufiq Fauzi & Patrick Lavoie & Luca Sorelli & Mohammad Davoud Heidari & Ben Amor, 2019. "Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 11(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shenghan Li & Huanyu Wu & Zhikun Ding, 2018. "Identifying Sustainable Wood Sources for the Construction Industry: A Case Study," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    2. Chihiro Kayo & Ryu Noda, 2018. "Climate Change Mitigation Potential of Wood Use in Civil Engineering in Japan Based on Life-Cycle Assessment," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    3. Dimoudi, A. & Tompa, C., 2008. "Energy and environmental indicators related to construction of office buildings," Resources, Conservation & Recycling, Elsevier, vol. 53(1), pages 86-95.
    4. Brainard, Julii & Lovett, Andrew & Bateman, Ian, 2006. "Sensitivity analysis in calculating the social value of carbon sequestered in British grown Sitka spruce," Journal of Forest Economics, Elsevier, vol. 12(3), pages 201-228, December.
    5. L. Gustavsson & R. Madlener & H.-F. Hoen & G. Jungmeier & T. Karjalainen & S. KlÖhn & K. Mahapatra & J. Pohjola & B. Solberg & H. Spelter, 2006. "The Role of Wood Material for Greenhouse Gas Mitigation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1097-1127, September.
    6. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    7. Haibo Guo & Ying Liu & Yiping Meng & Haoyu Huang & Cheng Sun & Yu Shao, 2017. "A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    8. Gielen, D. J. & de Feber, M. A. P. C. & Bos, A. J. M. & Gerlagh, T., 2001. "Biomass for energy or materials?: A Western European systems engineering perspective," Energy Policy, Elsevier, vol. 29(4), pages 291-302, March.
    9. Braun, Martin & Winner, Georg & Schwarzbauer, Peter & Stern, Tobias, 2016. "Apparent Half-Life-Dynamics of Harvested Wood Products (HWPs) in Austria: Development and analysis of weighted time-series for 2002 to 2011," Forest Policy and Economics, Elsevier, vol. 63(C), pages 28-34.
    10. Silvia Vilčeková & Monika Čuláková & Eva Krídlová Burdová & Jana Katunská, 2015. "Energy and Environmental Evaluation of Non-Transparent Constructions of Building Envelope for Wooden Houses," Energies, MDPI, vol. 8(10), pages 1-29, October.
    11. Yvan Dutil & Daniel Rousse & Guillermo Quesada, 2011. "Sustainable Buildings: An Ever Evolving Target," Sustainability, MDPI, vol. 3(2), pages 1-22, February.
    12. Sathre, Roger & Gustavsson, Leif, 2009. "Using wood products to mitigate climate change: External costs and structural change," Applied Energy, Elsevier, vol. 86(2), pages 251-257, February.
    13. Cherubini, Francesco & Strømman, Anders H. & Hertwich, Edgar, 2011. "Effects of boreal forest management practices on the climate impact of CO2 emissions from bioenergy," Ecological Modelling, Elsevier, vol. 223(1), pages 59-66.
    14. Edgaras Linkevičius & Povilas Žemaitis & Marius Aleinikovas, 2023. "Sustainability Impacts of Wood- and Concrete-Based Frame Buildings," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    15. Petrovic, Bojana & Myhren, Jonn Are & Zhang, Xingxing & Wallhagen, Marita & Eriksson, Ola, 2019. "Life cycle assessment of a wooden single-family house in Sweden," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Haibo Guo & Ying Liu & Wen-Shao Chang & Yu Shao & Cheng Sun, 2017. "Energy Saving and Carbon Reduction in the Operation Stage of Cross Laminated Timber Residential Buildings in China," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    17. Chi-hsiang Wang & Xiaoming Wang, 2012. "Vulnerability of timber in ground contact to fungal decay under climate change," Climatic Change, Springer, vol. 115(3), pages 777-794, December.
    18. Min-Seop Seo & Taeyeon Kim & Goopyo Hong & Hyungkeun Kim, 2016. "On-Site Measurements of CO 2 Emissions during the Construction Phase of a Building Complex," Energies, MDPI, vol. 9(8), pages 1-13, July.
    19. Karolina Wojtacha-Rychter & Piotr Kucharski & Adam Smolinski, 2021. "Conventional and Alternative Sources of Thermal Energy in the Production of Cement—An Impact on CO 2 Emission," Energies, MDPI, vol. 14(6), pages 1-15, March.
    20. Nässén, Jonas & Holmberg, John & Wadeskog, Anders & Nyman, Madeleine, 2007. "Direct and indirect energy use and carbon emissions in the production phase of buildings: An input–output analysis," Energy, Elsevier, vol. 32(9), pages 1593-1602.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jenpmg:v:58:y:2015:i:7:p:1217-1241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJEP20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.