IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i1p139-d126107.html
   My bibliography  Save this article

Identifying Sustainable Wood Sources for the Construction Industry: A Case Study

Author

Listed:
  • Shenghan Li

    (School of Civil Engineering, Shenzhen University, Shenzhen 518060, China)

  • Huanyu Wu

    (School of Architecture and Built Environment, The University of Adelaide, Adelaide 5005, Australia)

  • Zhikun Ding

    (School of Civil Engineering, Shenzhen University, Shenzhen 518060, China)

Abstract

Wood is generally considered as a sustainable construction material. However, there are not sufficient wood resources in many countries or regions, especially those short of land resources. These countries and regions have to import wood from overseas. Therefore, it is imperative to determine how to choose sustainable importing sources in order to improve the sustainability performance of using wood in construction. This study compares the sustainability performance of wood imported from different regions by considering wood harvesting, manufacture, and transportation. A framework accounting energy consumption and CO 2 emissions is developed for sustainability assessment. The results show that importing wood from Canada, Australia, and New Zealand to Taiwan demands a relatively lower amount of energy than from other regions. Specifically, importing wood from Canada (West) demands the lowest amount of energy (2095 MJ/m 3 ), while importing wood form Brazil consumes the highest amount of energy (5356 MJ/m 3 ). In addition, findings showed that the CO 2 emissions generated from importing wood from Sweden are significant lower than those from other regions, although the energy consumed during the importing process is relatively high. The study also revealed that the wood manufacturing process and marine transportation contribute to the most energy consumption and CO 2 emissions among all importing processes analysed from most of studied regions.

Suggested Citation

  • Shenghan Li & Huanyu Wu & Zhikun Ding, 2018. "Identifying Sustainable Wood Sources for the Construction Industry: A Case Study," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:1:p:139-:d:126107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/1/139/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/1/139/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brannlund, Runar & Lundgren, Tommy, 2004. "A dynamic analysis of interfuel substitution for Swedish heating plants," Energy Economics, Elsevier, vol. 26(6), pages 961-976, November.
    2. Borjesson, Pal & Gustavsson, Leif, 2000. "Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives," Energy Policy, Elsevier, vol. 28(9), pages 575-588, July.
    3. Sathre, Roger & Gustavsson, Leif, 2009. "Using wood products to mitigate climate change: External costs and structural change," Applied Energy, Elsevier, vol. 86(2), pages 251-257, February.
    4. Andrew D. Basiago, 1995. "Methods of defining 'sustainability'," Sustainable Development, John Wiley & Sons, Ltd., vol. 3(3), pages 109-119.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongpeng Xu & Jing Li & Jianmei Wu & Jian Kang, 2019. "Evaluation of Wood Coverage on Building Facades Towards Sustainability," Sustainability, MDPI, vol. 11(5), pages 1-12, March.
    2. Venn, Tyron J., 2023. "Reconciling timber harvesting, biodiversity conservation and carbon sequestration in Queensland, Australia," Forest Policy and Economics, Elsevier, vol. 152(C).
    3. Harkaitz García & Mikel Zubizarreta & Jesús Cuadrado & Juan Luis Osa, 2018. "Sustainability Improvement in the Design of Lightweight Roofs: A New Prototype of Hybrid Steel and Wood Purlins," Sustainability, MDPI, vol. 11(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Winchester, Niven & Reilly, John M., 2020. "The economic and emissions benefits of engineered wood products in a low-carbon future," Energy Economics, Elsevier, vol. 85(C).
    2. Chihiro Kayo & Ryu Noda, 2018. "Climate Change Mitigation Potential of Wood Use in Civil Engineering in Japan Based on Life-Cycle Assessment," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    3. Lundmark, Robert & Olsson, Anna, 2015. "Factor substitution and procurement competition for forest resources in Sweden," International Journal of Production Economics, Elsevier, vol. 169(C), pages 99-109.
    4. Luo, Wen & Mineo, Keito & Matsushita, Koji & Kanzaki, Mamoru, 2018. "Consumer willingness to pay for modern wooden structures: A comparison between China and Japan," Forest Policy and Economics, Elsevier, vol. 91(C), pages 84-93.
    5. James Keirstead & Matt Leach, 2008. "Bridging the gaps between theory and practice: a service niche approach to urban sustainability indicators," Sustainable Development, John Wiley & Sons, Ltd., vol. 16(5), pages 329-340.
    6. Brännlund, Runar & Lundgren, Tommy, 2005. "Swedish Industry and Kyoto – An Assessment of the Effects of the European CO2 Emission Permit Trading System," Umeå Economic Studies 668, Umeå University, Department of Economics.
    7. Brannlund, Runar & Lundgren, Tommy, 2007. "Swedish industry and Kyoto--An assessment of the effects of the European CO2 emission trading system," Energy Policy, Elsevier, vol. 35(9), pages 4749-4762, September.
    8. Considine, Timothy J. & Manderson, Edward J.M., 2015. "The cost of solar-centric renewable portfolio standards and reducing coal power generation using Arizona as a case study," Energy Economics, Elsevier, vol. 49(C), pages 402-419.
    9. Jevgenijs Steinbuks, 2012. "Interfuel Substitution and Energy Use in the U.K. Manufacturing Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    10. Dimoudi, A. & Tompa, C., 2008. "Energy and environmental indicators related to construction of office buildings," Resources, Conservation & Recycling, Elsevier, vol. 53(1), pages 86-95.
    11. Brainard, Julii & Lovett, Andrew & Bateman, Ian, 2006. "Sensitivity analysis in calculating the social value of carbon sequestered in British grown Sitka spruce," Journal of Forest Economics, Elsevier, vol. 12(3), pages 201-228, December.
    12. Steinbuks, Jevgenijs & Narayanan, Badri G., 2015. "Fossil fuel producing economies have greater potential for industrial interfuel substitution," Energy Economics, Elsevier, vol. 47(C), pages 168-177.
    13. Cruz Jr., Jose B. & Tan, Raymond R. & Culaba, Alvin B. & Ballacillo, Jo-Anne, 2009. "A dynamic input-output model for nascent bioenergy supply chains," Applied Energy, Elsevier, vol. 86(Supplemen), pages 86-94, November.
    14. L. Gustavsson & R. Madlener & H.-F. Hoen & G. Jungmeier & T. Karjalainen & S. KlÖhn & K. Mahapatra & J. Pohjola & B. Solberg & H. Spelter, 2006. "The Role of Wood Material for Greenhouse Gas Mitigation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1097-1127, September.
    15. Ricciardi, P. & Belloni, E. & Cotana, F., 2014. "Innovative panels with recycled materials: Thermal and acoustic performance and Life Cycle Assessment," Applied Energy, Elsevier, vol. 134(C), pages 150-162.
    16. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    17. Considine, Timothy & Manderson, Edward, 2014. "The role of energy conservation and natural gas prices in the costs of achieving California's renewable energy goals," Energy Economics, Elsevier, vol. 44(C), pages 291-301.
    18. Haibo Guo & Ying Liu & Yiping Meng & Haoyu Huang & Cheng Sun & Yu Shao, 2017. "A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    19. Gielen, D. J. & de Feber, M. A. P. C. & Bos, A. J. M. & Gerlagh, T., 2001. "Biomass for energy or materials?: A Western European systems engineering perspective," Energy Policy, Elsevier, vol. 29(4), pages 291-302, March.
    20. Braun, Martin & Winner, Georg & Schwarzbauer, Peter & Stern, Tobias, 2016. "Apparent Half-Life-Dynamics of Harvested Wood Products (HWPs) in Austria: Development and analysis of weighted time-series for 2002 to 2011," Forest Policy and Economics, Elsevier, vol. 63(C), pages 28-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:1:p:139-:d:126107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.