IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v62y2014icp31-46.html
   My bibliography  Save this article

An integrated optimization modeling approach for planning emission trading and clean-energy development under uncertainty

Author

Listed:
  • Li, Y.P.
  • Huang, G.H.
  • Li, M.W.

Abstract

The growing concern for global warming caused by the increased atmospheric concentration of carbon dioxide (CO2) has a significant effect on environmental and energy policies and economic activities, due to the ever-increasing use of fossil fuels such as coal, oil and natural gas throughout the world. A variety of complexities and uncertainties exist in CO2-emission-related processes and various impact factors, such as CO2-emission inventory, mitigation measure, and cost parameter. Decision makers face problems of how many clean-energy resources (or carbon credits) are needed to be replaced (or bought) by measuring electric-power benefits and uncertain economic penalties from random excess CO2 exceeding to given discharge permits. In this study, an integrated optimization modeling approach is developed for planning CO2 abatement through emission trading scheme (ETS) and clean development mechanism (CDM), where uncertainties presented in terms of fuzzy sets, interval values, and random variables can be addressed. The developed model is also applied to a case study of planning CO2-emission mitigation for an electric-power system (EPS) that involves three fossil-fueled power plants (i.e., gas, oil and coal-power plants). Different trading schemes and clean-energy development plans corresponding to different CO2-emission management policies have been analyzed. The results demonstrate that CO2-emission reduction program can be performed cost-effective through emission trading and clean-energy development projects. Violation analyses are also conducted to demonstrate that different violation levels for model’s objective and constraints have different effects on system benefit and satisfaction degree as well as emission trading and clean-energy development.

Suggested Citation

  • Li, Y.P. & Huang, G.H. & Li, M.W., 2014. "An integrated optimization modeling approach for planning emission trading and clean-energy development under uncertainty," Renewable Energy, Elsevier, vol. 62(C), pages 31-46.
  • Handle: RePEc:eee:renene:v:62:y:2014:i:c:p:31-46
    DOI: 10.1016/j.renene.2013.06.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113003224
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.06.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claudia Kemfert & Wietze Lise & Richard Tol, 2004. "Games of Climate Change with International Trade," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(2), pages 209-232, June.
    2. Ibrahim Ahamada & Djamel Kirat, 2011. "The impact of the European Union Emission Trading Scheme on electricity generation," PSE-Ecole d'économie de Paris (Postprint) hal-00629900, HAL.
    3. Chen, W.T. & Li, Y.P. & Huang, G.H. & Chen, X. & Li, Y.F., 2010. "A two-stage inexact-stochastic programming model for planning carbon dioxide emission trading under uncertainty," Applied Energy, Elsevier, vol. 87(3), pages 1033-1047, March.
    4. van der Gaast, Wytze & Begg, Katherine & Flamos, Alexandros, 2009. "Promoting sustainable energy technology transfers to developing countries through the CDM," Applied Energy, Elsevier, vol. 86(2), pages 230-236, February.
    5. Alishahi, E. & Moghaddam, M. Parsa & Sheikh-El-Eslami, M.K., 2012. "A system dynamics approach for investigating impacts of incentive mechanisms on wind power investment," Renewable Energy, Elsevier, vol. 37(1), pages 310-317.
    6. Schroeder, Miriam, 2009. "Utilizing the clean development mechanism for the deployment of renewable energies in China," Applied Energy, Elsevier, vol. 86(2), pages 237-242, February.
    7. Kirat, Djamel & Ahamada, Ibrahim, 2011. "The impact of the European Union emission trading scheme on the electricity-generation sector," Energy Economics, Elsevier, vol. 33(5), pages 995-1003, September.
    8. Vine, Edward & Kats, Gregory & Sathaye, Jayant & Joshi, Hemant, 2003. "International greenhouse gas trading programs: a discussion of measurement and accounting issues," Energy Policy, Elsevier, vol. 31(3), pages 211-224, February.
    9. Zhu, Y. & Li, Y.P. & Huang, G.H., 2013. "Planning carbon emission trading for Beijing's electric power systems under dual uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 113-128.
    10. Buckman, Greg & Diesendorf, Mark, 2010. "Addendum to "Design limitations in Australian renewable electricity policies" [Energy Policy 38 (2010), 3365-3376]," Energy Policy, Elsevier, vol. 38(11), pages 7539-7540, November.
    11. Rehdanz, Katrin & Tol, Richard S.J., 2005. "Unilateral regulation of bilateral trade in greenhouse gas emission permits," Ecological Economics, Elsevier, vol. 54(4), pages 397-416, September.
    12. Szabo, Laszlo & Hidalgo, Ignacio & Ciscar, Juan Carlos & Soria, Antonio, 2006. "CO2 emission trading within the European Union and Annex B countries: the cement industry case," Energy Policy, Elsevier, vol. 34(1), pages 72-87, January.
    13. Brechet, Thierry & Lussis, Benoit, 2006. "The contribution of the clean development mechanism to national climate policies," Journal of Policy Modeling, Elsevier, vol. 28(9), pages 981-994, December.
    14. Barros, Regina Mambeli & Tiago Filho, Geraldo Lúcio, 2012. "Small hydropower and carbon credits revenue for an SHP project in national isolated and interconnected systems in Brazil," Renewable Energy, Elsevier, vol. 48(C), pages 27-34.
    15. Pekala, Lukasz M. & Tan, Raymond R. & Foo, Dominic C.Y. & Jezowski, Jacek M., 2010. "Optimal energy planning models with carbon footprint constraints," Applied Energy, Elsevier, vol. 87(6), pages 1903-1910, June.
    16. Kuik, Onno & Mulder, Machiel, 2004. "Emissions trading and competitiveness: pros and cons of relative and absolute schemes," Energy Policy, Elsevier, vol. 32(6), pages 737-745, April.
    17. Subbarao, Srikanth & Lloyd, Bob, 2011. "Can the Clean Development Mechanism (CDM) deliver?," Energy Policy, Elsevier, vol. 39(3), pages 1600-1611, March.
    18. Marcus Wagner, 2004. "Firms, the Framework Convention on Climate Change and the EU Emissions Trading System," Others 0407001, University Library of Munich, Germany.
    19. Klessmann, Corinna & Rathmann, Max & de Jager, David & Gazzo, Alexis & Resch, Gustav & Busch, Sebastian & Ragwitz, Mario, 2013. "Policy options for reducing the costs of reaching the European renewables target," Renewable Energy, Elsevier, vol. 57(C), pages 390-403.
    20. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "Planning regional energy system in association with greenhouse gas mitigation under uncertainty," Applied Energy, Elsevier, vol. 88(3), pages 599-611, March.
    21. Birge, John R. & Louveaux, Francois V., 1988. "A multicut algorithm for two-stage stochastic linear programs," European Journal of Operational Research, Elsevier, vol. 34(3), pages 384-392, March.
    22. Ellerman,A. Denny & Buchner,Barbara K. & Carraro,Carlo (ed.), 2007. "Allocation in the European Emissions Trading Scheme," Cambridge Books, Cambridge University Press, number 9780521875684.
    23. Sovacool, Benjamin K., 2011. "The policy challenges of tradable credits: A critical review of eight markets," Energy Policy, Elsevier, vol. 39(2), pages 575-585, February.
    24. Roughgarden, Tim & Schneider, Stephen H., 1999. "Climate change policy: quantifying uncertainties for damages and optimal carbon taxes," Energy Policy, Elsevier, vol. 27(7), pages 415-429, July.
    25. Lee, Cheng F. & Lin, Sue J. & Lewis, Charles, 2008. "Analysis of the impacts of combining carbon taxation and emission trading on different industry sectors," Energy Policy, Elsevier, vol. 36(2), pages 722-729, February.
    26. Ibrahim Ahamada & Djamel Kirat, 2011. "The impact of the European Union Emission Trading Scheme on electricity generation," Post-Print hal-00629900, HAL.
    27. Zhu, Y. & Li, Y.P. & Huang, G.H., 2012. "Planning municipal-scale energy systems under functional interval uncertainties," Renewable Energy, Elsevier, vol. 39(1), pages 71-84.
    28. El-Fadel, M. & Zeinati, M. & Ghaddar, N. & Mezher, T., 2001. "Uncertainty in estimating and mitigating industrial related GHG emissions," Energy Policy, Elsevier, vol. 29(12), pages 1031-1043, October.
    29. Michel, David, 2009. "Foxes, hedgehogs, and greenhouse governance: Knowledge, uncertainty, and international policy-making in a warming World," Applied Energy, Elsevier, vol. 86(2), pages 258-264, February.
    30. Chen, C. & Li, Y.P. & Huang, G.H. & Zhu, Y., 2012. "An inexact robust nonlinear optimization method for energy systems planning under uncertainty," Renewable Energy, Elsevier, vol. 47(C), pages 55-66.
    31. Amiri, S. & Moshfegh, B., 2010. "Possibilities and consequences of deregulation of the European electricity market for connection of heat sparse areas to district heating systems," Applied Energy, Elsevier, vol. 87(7), pages 2401-2410, July.
    32. Buckman, Greg & Diesendorf, Mark, 2010. "Design limitations in Australian renewable electricity policies," Energy Policy, Elsevier, vol. 38(7), pages 3365-3376, July.
    33. Ibrahim Ahamada & Djamel Kirat, 2011. "The impact of the European Union Emission Trading Scheme on electricity generation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00629900, HAL.
    34. Krozer, Yoram, 2013. "Cost and benefit of renewable energy in the European Union," Renewable Energy, Elsevier, vol. 50(C), pages 68-73.
    35. Abadie, Luis M. & Chamorro, José M., 2008. "European CO2 prices and carbon capture investments," Energy Economics, Elsevier, vol. 30(6), pages 2992-3015, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Cuixia & Sun, Mei & Shen, Bo & Li, Ranran & Tian, Lixin, 2014. "Optimization of China's energy structure based on portfolio theory," Energy, Elsevier, vol. 77(C), pages 890-897.
    2. Nie, S. & Huang, Charley Z. & Huang, G.H. & Li, Y.P. & Chen, J.P. & Fan, Y.R. & Cheng, G.H., 2016. "Planning renewable energy in electric power system for sustainable development under uncertainty – A case study of Beijing," Applied Energy, Elsevier, vol. 162(C), pages 772-786.
    3. Mei, H. & Li, Y.P. & Suo, C. & Ma, Y. & Lv, J., 2020. "Analyzing the impact of climate change on energy-economy-carbon nexus system in China," Applied Energy, Elsevier, vol. 262(C).
    4. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    5. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico, 2014. "An integrated framework of agent-based modelling and robust optimization for microgrid energy management," Applied Energy, Elsevier, vol. 129(C), pages 70-88.
    6. Zhang, J.L. & Li, Y.P. & Wang, C.X. & Huang, G.H., 2015. "An inexact simulation-based stochastic optimization method for identifying effluent trading strategies of agricultural nonpoint sources," Agricultural Water Management, Elsevier, vol. 152(C), pages 72-90.
    7. Zhang, X.Y. & Huang, G.H. & Zhu, H. & Li, Y.P., 2017. "A fuzzy-stochastic power system planning model: Reflection of dual objectives and dual uncertainties," Energy, Elsevier, vol. 123(C), pages 664-676.
    8. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2015. "Carbon emissions trading scheme exploration in China: A multi-agent-based model," Energy Policy, Elsevier, vol. 81(C), pages 152-169.
    9. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    10. Vahidinasab, Vahid, 2014. "Optimal distributed energy resources planning in a competitive electricity market: Multiobjective optimization and probabilistic design," Renewable Energy, Elsevier, vol. 66(C), pages 354-363.
    11. Tang, Ling & Shi, Jiarui & Bao, Qin, 2016. "Designing an emissions trading scheme for China with a dynamic computable general equilibrium model," Energy Policy, Elsevier, vol. 97(C), pages 507-520.
    12. Zhou, Y. & Li, Y.P. & Huang, G.H., 2015. "Planning sustainable electric-power system with carbon emission abatement through CDM under uncertainty," Applied Energy, Elsevier, vol. 140(C), pages 350-364.
    13. Jin, S.W. & Li, Y.P. & Huang, G.H. & Nie, S., 2018. "Analyzing the performance of clean development mechanism for electric power systems under uncertain environment," Renewable Energy, Elsevier, vol. 123(C), pages 382-397.
    14. Chen, Yihui & Jiang, Ping & Dong, Wenbo & Huang, Beijia, 2015. "Analysis on the carbon trading approach in promoting sustainable buildings in China," Renewable Energy, Elsevier, vol. 84(C), pages 130-137.
    15. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
    16. Fuentes-Cortés, Luis Fabián & Flores-Tlacuahuac, Antonio & Ponce-Ortega, José María, 2019. "Integrated utility pricing and design of water-energy rural off-grid systems," Energy, Elsevier, vol. 177(C), pages 511-529.
    17. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2016. "Wood pellets as a sustainable energy alternative in Portugal," Renewable Energy, Elsevier, vol. 85(C), pages 1011-1016.
    18. Yu, L. & Li, Y.P. & Huang, G.H., 2019. "Planning municipal-scale mixed energy system for stimulating renewable energy under multiple uncertainties - The City of Qingdao in Shandong Province, China," Energy, Elsevier, vol. 166(C), pages 1120-1133.
    19. Bingxin Zeng & Jun Xie & Xiaobing Zhang & Yang Yu & Lei Zhu, 2020. "The impacts of emission trading scheme on China’s thermal power industry: A pre-evaluation from the micro level," Energy & Environment, , vol. 31(6), pages 1007-1030, September.
    20. Lu, W.T. & Dai, C. & Fu, Z.H. & Liang, Z.Y. & Guo, H.C., 2018. "An interval-fuzzy possibilistic programming model to optimize China energy management system with CO2 emission constraint," Energy, Elsevier, vol. 142(C), pages 1023-1039.
    21. Simoes, Sofia & Fortes, Patrícia & Seixas, Júlia & Huppes, Gjalt, 2015. "Assessing effects of exogenous assumptions in GHG emissions forecasts – a 2020 scenario study for Portugal using the Times energy technology model," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 221-235.
    22. Yue‐Jun Zhang & Wei Shi & Lin Jiang, 2020. "Does China's carbon emissions trading policy improve the technology innovation of relevant enterprises?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 872-885, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, W.T. & Li, Y.P. & Huang, G.H. & Chen, X. & Li, Y.F., 2010. "A two-stage inexact-stochastic programming model for planning carbon dioxide emission trading under uncertainty," Applied Energy, Elsevier, vol. 87(3), pages 1033-1047, March.
    2. Li, M.W. & Li, Y.P. & Huang, G.H., 2011. "An interval-fuzzy two-stage stochastic programming model for planning carbon dioxide trading under uncertainty," Energy, Elsevier, vol. 36(9), pages 5677-5689.
    3. Tang, Ling & Wang, Haohan & Li, Ling & Yang, Kaitong & Mi, Zhifu, 2020. "Quantitative models in emission trading system research: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Chen, C. & Li, Y.P. & Huang, G.H., 2013. "An inexact robust optimization method for supporting carbon dioxide emissions management in regional electric-power systems," Energy Economics, Elsevier, vol. 40(C), pages 441-456.
    5. Teng, Fei & Wang, Xin & Zhiqiang, LV, 2014. "Introducing the emissions trading system to China’s electricity sector: Challenges and opportunities," Energy Policy, Elsevier, vol. 75(C), pages 39-45.
    6. Gavard, Claire & Kirat, Djamel, 2018. "Flexibility in the market for international carbon credits and price dynamics difference with European allowances," Energy Economics, Elsevier, vol. 76(C), pages 504-518.
    7. Chen, C. & Li, Y.P. & Huang, G.H., 2016. "Interval-fuzzy municipal-scale energy model for identification of optimal strategies for energy management – A case study of Tianjin, China," Renewable Energy, Elsevier, vol. 86(C), pages 1161-1177.
    8. Frieder Mokinski & Nikolas Wölfing, 2014. "The effect of regulatory scrutiny: Asymmetric cost pass-through in power wholesale and its end," Journal of Regulatory Economics, Springer, vol. 45(2), pages 175-193, April.
    9. Leroutier, Marion, 2022. "Carbon pricing and power sector decarbonization: Evidence from the UK," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    10. Rübbelke, Dirk & Vögele, Stefan, 2013. "Effects of carbon dioxide capture and storage in Germany on European electricity exchange and welfare," Energy Policy, Elsevier, vol. 59(C), pages 582-588.
    11. Wang, Xue-Chao & Klemeš, Jiří Jaromír & Wang, Yutao & Foley, Aoife & Huisingh, Donald & Guan, Dabo & Dong, Xiaobin & Varbanov, Petar Sabev, 2021. "Unsustainable imbalances and inequities in Carbon-Water-Energy flows across the EU27," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Hanif, Waqas & Arreola Hernandez, Jose & Mensi, Walid & Kang, Sang Hoon & Uddin, Gazi Salah & Yoon, Seong-Min, 2021. "Nonlinear dependence and connectedness between clean/renewable energy sector equity and European emission allowance prices," Energy Economics, Elsevier, vol. 101(C).
    13. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2022. "How effective is carbon pricing?—A machine learning approach to policy evaluation," Journal of Environmental Economics and Management, Elsevier, vol. 112(C).
    14. Paolo Falbo & Cristian Pelizzari & Luca Taschini, 2016. "Renewables, allowances markets, and capacity expansion in energy-only markets," GRI Working Papers 246, Grantham Research Institute on Climate Change and the Environment.
    15. Golombek, Rolf & Kittelsen, Sverre A.C. & Rosendahl, Knut Einar, 2013. "Price and welfare effects of emission quota allocation," Energy Economics, Elsevier, vol. 36(C), pages 568-580.
    16. Franco, Carlos J. & Castaneda, Monica & Dyner, Isaac, 2015. "Simulating the new British Electricity-Market Reform," European Journal of Operational Research, Elsevier, vol. 245(1), pages 273-285.
    17. George Daskalakis, Lazaros Symeonidis, Raphael N. Markellos, 2015. "Electricity futures prices in an emissions constrained economy: Evidence from European power markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    18. Onyebuchi, V.E. & Kolios, A. & Hanak, D.P. & Biliyok, C. & Manovic, V., 2018. "A systematic review of key challenges of CO2 transport via pipelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2563-2583.
    19. Bersani, Alberto M. & Falbo, Paolo & Mastroeni, Loretta, 2022. "Is the ETS an effective environmental policy? Undesired interaction between energy-mix, fuel-switch and electricity prices," Energy Economics, Elsevier, vol. 110(C).
    20. Feng Liu & Tao Lv & Yuan Meng & Xiaoran Hou & Jie Xu & Xu Deng, 2022. "Low-Carbon Transition Paths of Coal Power in China’s Provinces under the Context of the Carbon Trading Scheme," Sustainability, MDPI, vol. 14(15), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:62:y:2014:i:c:p:31-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.