IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v152y2015icp72-90.html
   My bibliography  Save this article

An inexact simulation-based stochastic optimization method for identifying effluent trading strategies of agricultural nonpoint sources

Author

Listed:
  • Zhang, J.L.
  • Li, Y.P.
  • Wang, C.X.
  • Huang, G.H.

Abstract

Agricultural nonpoint sources (NPS) pollution has long been regarded as the leading challenge in maintaining water quality of receiving water bodies. Effluent trading can serve as a cost-effective way to achieve optimal configuration of discharge permits in agricultural NPS pollution control. However, great difficulties exist in practical effluent trading planning, including uncertainties related to randomness and imprecision, system risk of nutrient loadings being unacceptably high, and factors with spatiotemporal heterogeneity within the watershed. In this study, an inexact simulation-based stochastic optimization method (ISSOM) is developed for identifying effluent trading strategies in response to the above challenges. With the aid of technique of interval analysis, uncertain parameters related to nutrient yields can be handled and dynamic variation of NPS contaminant loadings can be reasonably addressed. Besides, ISSOM can tackle uncertainties expressed as fuzzy, stochastic and interval formats and capture the notion of risk under high-variability situation in NPS pollution control. The ISSOM is applied to a real case of agricultural NPS pollution mitigation through effluent trading in Xiangxihe Watershed. Results show that the uncertainties play a major role in successfully launching an effluent trading program, and trading scheme can mitigate agricultural NPS pollution with an increased system benefit. Results also reveal that the agricultural zones of Xiakou and Gufu are the major pollution sources and main purchasers in effluent trading, and Guizhou zone is the main vendor which contributes least to nutrient discharge. These findings can not only facilitate identification of the main pollution sources and optimal effluent trading schemes, but also gain insight into the tradeoff among the agricultural benefit, system risk, and satisfaction degree.

Suggested Citation

  • Zhang, J.L. & Li, Y.P. & Wang, C.X. & Huang, G.H., 2015. "An inexact simulation-based stochastic optimization method for identifying effluent trading strategies of agricultural nonpoint sources," Agricultural Water Management, Elsevier, vol. 152(C), pages 72-90.
  • Handle: RePEc:eee:agiwat:v:152:y:2015:i:c:p:72-90
    DOI: 10.1016/j.agwat.2014.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414004004
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammad Nikoo & Reza Kerachian & Mohammad Niksokhan, 2012. "Equitable Waste Load Allocation in Rivers Using Fuzzy Bi-matrix Games," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4539-4552, December.
    2. Jiang, Jingyuan & Li, Shiyu & Hu, Jiatang & Huang, Jia, 2014. "A modeling approach to evaluating the impacts of policy-induced land management practices on non-point source pollution: A case study of the Liuxi River watershed, China," Agricultural Water Management, Elsevier, vol. 131(C), pages 1-16.
    3. Huang, G. H. & Baetz, B. W. & Patry, G. G., 1995. "Grey fuzzy integer programming: An application to regional waste management planning under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 29(1), pages 17-38, March.
    4. Bossa, A.Y. & Diekkrüger, B. & Giertz, S. & Steup, G. & Sintondji, L.O. & Agbossou, E.K. & Hiepe, C., 2012. "Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa)," Agricultural Water Management, Elsevier, vol. 115(C), pages 20-37.
    5. López-Vicente, M. & Navas, A. & Gaspar, L. & Machín, J., 2013. "Advanced modelling of runoff and soil redistribution for agricultural systems: The SERT model," Agricultural Water Management, Elsevier, vol. 125(C), pages 1-12.
    6. Niraula, Rewati & Kalin, Latif & Srivastava, Puneet & Anderson, Christopher J., 2013. "Identifying critical source areas of nonpoint source pollution with SWAT and GWLF," Ecological Modelling, Elsevier, vol. 268(C), pages 123-133.
    7. Zhang, Xiaodong & Huang, Guo H. & Nie, Xianghui, 2009. "Optimal decision schemes for agricultural water quality management planning with imprecise objective," Agricultural Water Management, Elsevier, vol. 96(12), pages 1723-1731, December.
    8. Li, Y.P. & Liu, J. & Huang, G.H., 2014. "A hybrid fuzzy-stochastic programming method for water trading within an agricultural system," Agricultural Systems, Elsevier, vol. 123(C), pages 71-83.
    9. Li, W. & Li, Y.P. & Li, C.H. & Huang, G.H., 2010. "An inexact two-stage water management model for planning agricultural irrigation under uncertainty," Agricultural Water Management, Elsevier, vol. 97(11), pages 1905-1914, November.
    10. Chahor, Y. & Casalí, J. & Giménez, R. & Bingner, R.L. & Campo, M.A. & Goñi, M., 2014. "Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed in Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 134(C), pages 24-37.
    11. Huang, Guo H. & Baetz, Brian W. & Patry, Gilles G., 1995. "Grey integer programming: An application to waste management planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 83(3), pages 594-620, June.
    12. Shan, Nan & Ruan, Xiao-Hong & Xu, Jing & Pan, Zha-Rong, 2014. "Estimating the optimal width of buffer strip for nonpoint source pollution control in the Three Gorges Reservoir Area, China," Ecological Modelling, Elsevier, vol. 276(C), pages 51-63.
    13. Li, Y.P. & Huang, G.H. & Li, M.W., 2014. "An integrated optimization modeling approach for planning emission trading and clean-energy development under uncertainty," Renewable Energy, Elsevier, vol. 62(C), pages 31-46.
    14. Galelli, S. & Gandolfi, C. & Soncini-Sessa, R. & Agostani, D., 2010. "Building a metamodel of an irrigation district distributed-parameter model," Agricultural Water Management, Elsevier, vol. 97(2), pages 187-200, February.
    15. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Yingyuan & Xu, Gaohong & Wang, Yonggui & Engel, Bernard A. & Peng, Hong & Zhang, Wanshun & Cheng, Meiling & Dai, Minglong, 2017. "Modelling hydrology and water quality processes in the Pengxi River basin of the Three Gorges Reservoir using the soil and water assessment tool," Agricultural Water Management, Elsevier, vol. 182(C), pages 24-38.
    2. Wang, Taishan & Zhang, Junlong & You, Li & Zeng, Xueting & Ma, Yuan & Li, Yongping & Huang, Guohe, 2023. "Optimal design of two-dimensional water trading considering hybrid “three waters”-government participation for an agricultural watershed," Agricultural Water Management, Elsevier, vol. 288(C).
    3. Mohammad Reza Nikoo & Pouyan Hatami Bahman Beiglou & Najmeh Mahjouri, 2016. "Optimizing Multiple-Pollutant Waste Load Allocation in Rivers: An Interval Parameter Game Theoretic Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4201-4220, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    2. Zhou, Y. & Li, Y.P. & Huang, G.H., 2015. "Planning sustainable electric-power system with carbon emission abatement through CDM under uncertainty," Applied Energy, Elsevier, vol. 140(C), pages 350-364.
    3. ZhenFang Liu & GuoHe Huang, 2009. "Dual-Interval Two-Stage Optimization for Flood Management and Risk Analyses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2141-2162, September.
    4. David Rosenberg & Jay Lund, 2009. "Modeling Integrated Decisions for a Municipal Water System with Recourse and Uncertainties: Amman, Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(1), pages 85-115, January.
    5. Zhenfang Liu & Yang Zhou & Gordon Huang & Bin Luo, 2019. "Risk Aversion Based Inexact Stochastic Dynamic Programming Approach for Water Resources Management Planning under Uncertainty," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
    6. Piao, M.J. & Li, Y.P. & Huang, G.H. & Nie, S., 2015. "Risk analysis for Shanghai's electric power system under multiple uncertainties," Energy, Elsevier, vol. 87(C), pages 104-119.
    7. Huang, Y. & Li, Y.P. & Chen, X. & Ma, Y.G., 2012. "Optimization of the irrigation water resources for agricultural sustainability in Tarim River Basin, China," Agricultural Water Management, Elsevier, vol. 107(C), pages 74-85.
    8. Li, Y.P. & Huang, G.H. & Nie, X.H. & Nie, S.L., 2008. "A two-stage fuzzy robust integer programming approach for capacity planning of environmental management systems," European Journal of Operational Research, Elsevier, vol. 189(2), pages 399-420, September.
    9. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    10. Chunguang Bai & Joseph Sarkis, 2013. "Green information technology strategic justification and evaluation," Information Systems Frontiers, Springer, vol. 15(5), pages 831-847, November.
    11. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    12. Lin, Q.G. & Huang, G.H., 2009. "A dynamic inexact energy systems planning model for supporting greenhouse-gas emission management and sustainable renewable energy development under uncertainty--A case study for the City of Waterloo,," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1836-1853, October.
    13. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
    14. Tian, Chuyin & Huang, Guohe & Xie, Yulei, 2021. "Systematic evaluation for hydropower exploitation rationality in hydro-dominant area: A case study of Sichuan Province, China," Renewable Energy, Elsevier, vol. 168(C), pages 1096-1111.
    15. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    16. Liang, M.S. & Huang, G.H. & Chen, J.P. & Li, Y.P., 2022. "Development of non-deterministic energy-water-carbon nexus planning model: A case study of Shanghai, China," Energy, Elsevier, vol. 246(C).
    17. Hu, Qing & Huang, Guohe & Cai, Yanpeng & Huang, Ying, 2011. "Feasibility-based inexact fuzzy programming for electric power generation systems planning under dual uncertainties," Applied Energy, Elsevier, vol. 88(12), pages 4642-4654.
    18. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    19. Maqsood, Imran & Huang, Guo H. & Scott Yeomans, Julian, 2005. "An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 208-225, November.
    20. He, Li & Huang, Guo H. & Lu, Hongwei, 2011. "Bivariate interval semi-infinite programming with an application to environmental decision-making analysis," European Journal of Operational Research, Elsevier, vol. 211(3), pages 452-465, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:152:y:2015:i:c:p:72-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.