IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p6926-d294424.html
   My bibliography  Save this article

Risk Aversion Based Inexact Stochastic Dynamic Programming Approach for Water Resources Management Planning under Uncertainty

Author

Listed:
  • Zhenfang Liu

    (School of Public Administration, Hunan University, Changsha 410082, China)

  • Yang Zhou

    (Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China)

  • Gordon Huang

    (Environmental Systems Engineering Program, Faculty of Engineering, University of Regina, Regina, SK S4S 0A2, Canada)

  • Bin Luo

    (Manitoba Infrastructure, Winnipeg, MB R3C 0R8, Canada)

Abstract

In this study, a dual interval robust stochastic dynamic programming (DIRSDP) method is developed for planning water resources management systems under uncertainty. As an extension of the existing interval stochastic dynamic programming (ISDP) method, DIRSDP can deal with two-stage stochastic programming (TSP)-based planning problems associated with dynamic features, input uncertainties, and multistage concerns. Compared with other optimization methods dealing with uncertainties, the developed DIRSDP method has advantages in addressing uncertainties with complex presentations and reflecting decision makers’ risk-aversion attitudes within its optimization process. Parameters in the DIRSDP model can be represented as probability distributions as well as single and/or dual intervals. Decision makers’ risk-aversion attitudes can be reflected through restricting the deviation of the recourse costs to a tolerance level. Water-allocation plans can then be developed based on the analysis of tradeoffs between the system benefit and solution robustness. The developed method is applied to a case of water resources management planning. The solutions are reasonable, indicating applicability of the developed methodology.

Suggested Citation

  • Zhenfang Liu & Yang Zhou & Gordon Huang & Bin Luo, 2019. "Risk Aversion Based Inexact Stochastic Dynamic Programming Approach for Water Resources Management Planning under Uncertainty," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:6926-:d:294424
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/6926/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/6926/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maqsood, Imran & Huang, Guo H. & Scott Yeomans, Julian, 2005. "An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 208-225, November.
    2. Manuel Laguna, 1998. "Applying Robust Optimization to Capacity Expansion of One Location in Telecommunications with Demand Uncertainty," Management Science, INFORMS, vol. 44(11-Part-2), pages 101-110, November.
    3. Huang, G. H. & Baetz, B. W. & Patry, G. G., 1995. "Grey fuzzy integer programming: An application to regional waste management planning under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 29(1), pages 17-38, March.
    4. LOUVEAUX, François V., 1980. "A solution method for multistage stochastic programs with recourse with application to an energy investment problem," LIDAM Reprints CORE 415, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. C. Russell Philbrick & Peter K. Kitanidis, 2001. "Improved Dynamic Programming Methods for Optimal Control of Lumped-Parameter Stochastic Systems," Operations Research, INFORMS, vol. 49(3), pages 398-412, June.
    6. B. Luo & I. Maqsood & G. Huang, 2007. "Planning water resources systems with interval stochastic dynamic programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(6), pages 997-1014, June.
    7. Francois V. Louveaux, 1980. "A Solution Method for Multistage Stochastic Programs with Recourse with Application to an Energy Investment Problem," Operations Research, INFORMS, vol. 28(4), pages 889-902, August.
    8. K Darby-Dowman & S Barker & E Audsley & D Parsons, 2000. "A two-stage stochastic programming with recourse model for determining robust planting plans in horticulture," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(1), pages 83-89, January.
    9. Huang, Y. & Li, Y.P. & Chen, X. & Ma, Y.G., 2012. "Optimization of the irrigation water resources for agricultural sustainability in Tarim River Basin, China," Agricultural Water Management, Elsevier, vol. 107(C), pages 74-85.
    10. Vladimirou, Hercules & Zenios, Stavros A., 1997. "Stochastic linear programs with restricted recourse," European Journal of Operational Research, Elsevier, vol. 101(1), pages 177-192, August.
    11. Huang, Guo H. & Baetz, Brian W. & Patry, Gilles G., 1995. "Grey integer programming: An application to waste management planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 83(3), pages 594-620, June.
    12. Albrizio, Silvia & Kozluk, Tomasz & Zipperer, Vera, 2017. "Environmental policies and productivity growth: Evidence across industries and firms," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 209-226.
    13. L. Dai & C. H. Chen & J. R. Birge, 2000. "Convergence Properties of Two-Stage Stochastic Programming," Journal of Optimization Theory and Applications, Springer, vol. 106(3), pages 489-509, September.
    14. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Al-Maktoumi & Mohammad Mahdi Rajabi & Slim Zekri & Chefi Triki, 2021. "A Probabilistic Multiperiod Simulation–Optimization Approach for Dynamic Coastal Aquifer Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3447-3462, September.
    2. Chunjiang An & Mengfan Cai & Christophe Guy, 2020. "Rural Sustainable Environmental Management," Sustainability, MDPI, vol. 12(16), pages 1-5, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. ZhenFang Liu & GuoHe Huang, 2009. "Dual-Interval Two-Stage Optimization for Flood Management and Risk Analyses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2141-2162, September.
    2. Maqsood, Imran & Huang, Guo H. & Scott Yeomans, Julian, 2005. "An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 208-225, November.
    3. Lin, Q.G. & Huang, G.H. & Bass, B. & Qin, X.S., 2009. "IFTEM: An interval-fuzzy two-stage stochastic optimization model for regional energy systems planning under uncertainty," Energy Policy, Elsevier, vol. 37(3), pages 868-878, March.
    4. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
    5. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    6. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    7. P. Guo & G. Huang & L. He & H. Zhu, 2009. "Interval-parameter Two-stage Stochastic Semi-infinite Programming: Application to Water Resources Management under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 1001-1023, March.
    8. Liu, Y. & Huang, G.H. & Cai, Y.P. & Cheng, G.H. & Niu, Y.T. & An, K., 2009. "Development of an inexact optimization model for coupled coal and power management in North China," Energy Policy, Elsevier, vol. 37(11), pages 4345-4363, November.
    9. Mandal, Uday & Dhar, Anirban & Panda, Sudhindra N., 2021. "Enhancement of sustainable agricultural production system by integrated natural resources management framework under climatic and operational uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    10. Ye Liu & Guohe Huang & Yanpeng Cai & Cong Dong, 2011. "An Inexact Mix-Integer Two-Stage Linear Programming Model for Supporting the Management of a Low-Carbon Energy System in China," Energies, MDPI, vol. 4(10), pages 1-30, October.
    11. Cai, Y.P. & Huang, G.H. & Tan, Q. & Chen, B., 2011. "Identification of optimal strategies for improving eco-resilience to floods in ecologically vulnerable regions of a wetland," Ecological Modelling, Elsevier, vol. 222(2), pages 360-369.
    12. Dong, C. & Huang, G.H. & Cai, Y.P. & Xu, Y., 2011. "An interval-parameter minimax regret programming approach for power management systems planning under uncertainty," Applied Energy, Elsevier, vol. 88(8), pages 2835-2845, August.
    13. Y. Li & G. Huang & S. Nie, 2009. "Water Resources Management and Planning under Uncertainty: an Inexact Multistage Joint-Probabilistic Programming Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2515-2538, September.
    14. Yang Zhang & Jing Shen, 2021. "Wetland Restoration Planning Approach Based on Interval Fuzzy Linear Programming under Uncertainty," IJERPH, MDPI, vol. 18(18), pages 1-14, September.
    15. David Rosenberg & Jay Lund, 2009. "Modeling Integrated Decisions for a Municipal Water System with Recourse and Uncertainties: Amman, Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(1), pages 85-115, January.
    16. Chen, C. & Li, Y.P. & Huang, G.H. & Zhu, Y., 2012. "An inexact robust nonlinear optimization method for energy systems planning under uncertainty," Renewable Energy, Elsevier, vol. 47(C), pages 55-66.
    17. Ajay Singh, 2014. "Irrigation Planning and Management Through Optimization Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 1-14, January.
    18. Piao, M.J. & Li, Y.P. & Huang, G.H. & Nie, S., 2015. "Risk analysis for Shanghai's electric power system under multiple uncertainties," Energy, Elsevier, vol. 87(C), pages 104-119.
    19. Huang, Y. & Li, Y.P. & Chen, X. & Ma, Y.G., 2012. "Optimization of the irrigation water resources for agricultural sustainability in Tarim River Basin, China," Agricultural Water Management, Elsevier, vol. 107(C), pages 74-85.
    20. Zhang, J.L. & Li, Y.P. & Wang, C.X. & Huang, G.H., 2015. "An inexact simulation-based stochastic optimization method for identifying effluent trading strategies of agricultural nonpoint sources," Agricultural Water Management, Elsevier, vol. 152(C), pages 72-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:6926-:d:294424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.