IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i8p2835-2845.html
   My bibliography  Save this article

An interval-parameter minimax regret programming approach for power management systems planning under uncertainty

Author

Listed:
  • Dong, C.
  • Huang, G.H.
  • Cai, Y.P.
  • Xu, Y.

Abstract

In this study, an interval-parameter minimax regret programming (IMRP) method is developed for supporting the power management systems planning under uncertainty. This method incorporates techniques of interval linear programming (ILP) and minimax regret programming (MRP) within a general optimization framework. The developed IMRP could deal with multiple policy scenarios associated with different costs and risk levels without making any assumptions. It can analyze various economic consequences for all of the possible scenarios through minimizing the maximum cost regret values. The IMRP approach can successfully reduce the worst regrets incurred under the pre-regulated targets. Moreover, it can deal with uncertainties and complexities expressed as interval numbers. A case study of power management systems planning is then presented for demonstrating applicability of the developed approach. The results indicate that many decision alternatives are generated based on the interval solutions which can help decision makers identify the desired system designs with minimized economic cost loss and system-failure risk under uncertainty. The trade-off between system regret and security-failure risk can be handled effectively through this method. And the generated solutions can also provide multiple electric power generation patterns and capacity expansion schemes under the optimal strategy obtained through the developed IMRP method. It is indicated that the proposed method is efficient to provide the decision makers with available plans in actual operation of power management systems.

Suggested Citation

  • Dong, C. & Huang, G.H. & Cai, Y.P. & Xu, Y., 2011. "An interval-parameter minimax regret programming approach for power management systems planning under uncertainty," Applied Energy, Elsevier, vol. 88(8), pages 2835-2845, August.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:8:p:2835-2845
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(11)00074-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quaddus, M.A. & Goh, T.N., 1985. "Electric power generation expansion: Planning with multiple objectives," Applied Energy, Elsevier, vol. 19(4), pages 301-319.
    2. Qin, X.S. & Huang, G.H. & Zeng, G.M. & Chakma, A. & Huang, Y.F., 2007. "An interval-parameter fuzzy nonlinear optimization model for stream water quality management under uncertainty," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1331-1357, August.
    3. Maqsood, Imran & Huang, Guo H. & Scott Yeomans, Julian, 2005. "An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 208-225, November.
    4. Elkarmi, Fawwaz, 2008. "Load research as a tool in electric power system planning, operation, and control--The case of Jordan," Energy Policy, Elsevier, vol. 36(5), pages 1757-1763, May.
    5. Bunn, Derek W. & Paschentis, Spiros N., 1986. "Development of a stochastic model for the economic dispatch of electric power," European Journal of Operational Research, Elsevier, vol. 27(2), pages 179-191, October.
    6. Sadeghi, Mehdi & Mirshojaeian Hosseini, Hossein, 2006. "Energy supply planning in Iran by using fuzzy linear programming approach (regarding uncertainties of investment costs)," Energy Policy, Elsevier, vol. 34(9), pages 993-1003, June.
    7. Rachmatullah, C. & Aye, Lu & Fuller, R.J., 2007. "Scenario planning for the electricity generation in Indonesia," Energy Policy, Elsevier, vol. 35(4), pages 2352-2359, April.
    8. Cai, Y.P. & Huang, G.H. & Tan, Q. & Yang, Z.F., 2009. "Planning of community-scale renewable energy management systems in a mixed stochastic and fuzzy environment," Renewable Energy, Elsevier, vol. 34(7), pages 1833-1847.
    9. Kanudia, Amit & Loulou, Richard, 1998. "Robust responses to climate change via stochastic MARKAL: The case of Quebec," European Journal of Operational Research, Elsevier, vol. 106(1), pages 15-30, April.
    10. Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun & Wu, Qiong, 2010. "Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 87(12), pages 3642-3651, December.
    11. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    12. Huang, G. H. & Baetz, B. W. & Patry, G. G., 1995. "Grey fuzzy integer programming: An application to regional waste management planning under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 29(1), pages 17-38, March.
    13. Becerra-Lopez, Humberto R. & Golding, Peter, 2007. "Dynamic exergy analysis for capacity expansion of regional power-generation systems: Case study of far West Texas," Energy, Elsevier, vol. 32(11), pages 2167-2186.
    14. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    15. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Tan, Q., 2009. "Identification of optimal strategies for energy management systems planning under multiple uncertainties," Applied Energy, Elsevier, vol. 86(4), pages 480-495, April.
    16. Abraham Grosfeld-Nir & Asher Tishler, 1993. "A Stochastic Model for the Measurement of Electricity Outage Costs," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 157-174.
    17. Clarke, Harry R. & Reed, William J., 1990. "Oil-well valuation and abandonment with price and extraction rate uncertain," Resources and Energy, Elsevier, vol. 12(4), pages 361-382, December.
    18. Huang, Guo H. & Baetz, Brian W. & Patry, Gilles G., 1995. "Grey integer programming: An application to waste management planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 83(3), pages 594-620, June.
    19. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
    20. Nguyen, Khanh Q., 2008. "Internalizing externalities into capacity expansion planning: The case of electricity in Vietnam," Energy, Elsevier, vol. 33(5), pages 740-746.
    21. Muela, E. & Schweickardt, G. & Garces, F., 2007. "Fuzzy possibilistic model for medium-term power generation planning with environmental criteria," Energy Policy, Elsevier, vol. 35(11), pages 5643-5655, November.
    22. Borges, Ana Rosa & Antunes, Carlos Henggeler, 2003. "A fuzzy multiple objective decision support model for energy-economy planning," European Journal of Operational Research, Elsevier, vol. 145(2), pages 304-316, March.
    23. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    24. Liu, Y. & Huang, G.H. & Cai, Y.P. & Cheng, G.H. & Niu, Y.T. & An, K., 2009. "Development of an inexact optimization model for coupled coal and power management in North China," Energy Policy, Elsevier, vol. 37(11), pages 4345-4363, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    2. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    3. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    4. Ye Liu & Guohe Huang & Yanpeng Cai & Cong Dong, 2011. "An Inexact Mix-Integer Two-Stage Linear Programming Model for Supporting the Management of a Low-Carbon Energy System in China," Energies, MDPI, vol. 4(10), pages 1-30, October.
    5. Lin, Q.G. & Huang, G.H. & Bass, B. & Qin, X.S., 2009. "IFTEM: An interval-fuzzy two-stage stochastic optimization model for regional energy systems planning under uncertainty," Energy Policy, Elsevier, vol. 37(3), pages 868-878, March.
    6. Wang, Xingwei & Cai, Yanpeng & Chen, Jiajun & Dai, Chao, 2013. "A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management–A case study of Beijing," Energy, Elsevier, vol. 63(C), pages 334-344.
    7. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    8. Dong, Cong & Huang, Guohe & Cai, Yanpeng & Li, Wei & Cheng, Guanhui, 2014. "Fuzzy interval programming for energy and environmental systems management under constraint-violation and energy-substitution effects: A case study for the City of Beijing," Energy Economics, Elsevier, vol. 46(C), pages 375-394.
    9. Lin, Q.G. & Huang, G.H., 2009. "A dynamic inexact energy systems planning model for supporting greenhouse-gas emission management and sustainable renewable energy development under uncertainty--A case study for the City of Waterloo,," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1836-1853, October.
    10. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
    11. Chen, Yizhong & Lu, Hongwei & Li, Jing & Huang, Guohe & He, Li, 2016. "Regional planning of new-energy systems within multi-period and multi-option contexts: A case study of Fengtai, Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 356-372.
    12. Liu, Y. & Huang, G.H. & Cai, Y.P. & Cheng, G.H. & Niu, Y.T. & An, K., 2009. "Development of an inexact optimization model for coupled coal and power management in North China," Energy Policy, Elsevier, vol. 37(11), pages 4345-4363, November.
    13. Chen, C. & Li, Y.P. & Huang, G.H. & Zhu, Y., 2012. "An inexact robust nonlinear optimization method for energy systems planning under uncertainty," Renewable Energy, Elsevier, vol. 47(C), pages 55-66.
    14. Kassian T.T. Amesho & Emmanuel Innocents Edoun, 2019. "Financing Renewable Energy in Namibia - A Fundamental Key Challenge to the Sustainable Development Goal 7: Ensuring Access to Affordable, Reliable, Sustainable and Modern Energy for All," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 442-450.
    15. Hu, Qing & Huang, Guohe & Cai, Yanpeng & Huang, Ying, 2011. "Feasibility-based inexact fuzzy programming for electric power generation systems planning under dual uncertainties," Applied Energy, Elsevier, vol. 88(12), pages 4642-4654.
    16. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    17. Chen, C. & Li, Y.P. & Huang, G.H., 2016. "Interval-fuzzy municipal-scale energy model for identification of optimal strategies for energy management – A case study of Tianjin, China," Renewable Energy, Elsevier, vol. 86(C), pages 1161-1177.
    18. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "Planning regional energy system in association with greenhouse gas mitigation under uncertainty," Applied Energy, Elsevier, vol. 88(3), pages 599-611, March.
    19. Li, G.C. & Huang, G.H. & Lin, Q.G. & Zhang, X.D. & Tan, Q. & Chen, Y.M., 2011. "Development of a GHG-mitigation oriented inexact dynamic model for regional energy system management," Energy, Elsevier, vol. 36(5), pages 3388-3398.
    20. Shaban Boloukat, Mohammad Hadi & Akbari Foroud, Asghar, 2016. "Stochastic-based resource expansion planning for a grid-connected microgrid using interval linear programming," Energy, Elsevier, vol. 113(C), pages 776-787.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:8:p:2835-2845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.