IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2019-05-49.html
   My bibliography  Save this article

Financing Renewable Energy in Namibia - A Fundamental Key Challenge to the Sustainable Development Goal 7: Ensuring Access to Affordable, Reliable, Sustainable and Modern Energy for All

Author

Listed:
  • Kassian T.T. Amesho

    (Faculty of Management Sciences, Business School, Tshwane University of Technology, Private Bag X680, Pretoria 001, South Africa)

  • Emmanuel Innocents Edoun

    (Faculty of Management Sciences, Business School, Tshwane University of Technology, Private Bag X680, Pretoria 001, South Africa)

Abstract

Renewable energy (RE) has been a hot topic subsequently the increased awareness and understanding of the severe and serious effects of climate change. Like many developing countries across the globe and Africa in particular, Namibia is prone to such climate changes and, thus, should be more familiarized with the impacts of fossil fuel generation on the environment. Successful significant financial and technological investments in RE in Namibia needs a comprehensive understanding of the correlation among diverse categories of investors and their enthusiasm to finance RE. Contrariwise, using the Sustainable Development Goal 7: Ensure access to affordable, reliable, sustainable and modern energy for all, as a measure for a wide-ranging and sustainable growth we recognize the interaction values that comes with RE. We studied the asset portfolios of diverse RE technologies supported or subsidized by various financial actors in Namibia. We also related the performance of public and private types of investments and then discrete further with various financial actors (e.g. public banks, private banks, international climate finance) and the categories of RE technologies that are financed in (e.g. different types of energy production from wind, biomass or solar radiation). We then use these preliminary results to draw conclusion and suggestions on how investment impact the directionality of novelty, and the impacts on RE policy in Namibia. This study establishes that notwithstanding the apparent regulatory and economic challenges, Namibia can incorporate and use a blend of (restructured) energy price security structures, cross subsidizations and environmental taxes in-order to encourage initiatives intended at supplementary the country s progress of RE sources and hence ultimately support the UN Sustainable Energy for All Initiative.

Suggested Citation

  • Kassian T.T. Amesho & Emmanuel Innocents Edoun, 2019. "Financing Renewable Energy in Namibia - A Fundamental Key Challenge to the Sustainable Development Goal 7: Ensuring Access to Affordable, Reliable, Sustainable and Modern Energy for All," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 442-450.
  • Handle: RePEc:eco:journ2:2019-05-49
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/7704/4542
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/7704/4542
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koltsaklis, Nikolaos E. & Liu, Pei & Georgiadis, Michael C., 2015. "An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response," Energy, Elsevier, vol. 82(C), pages 865-888.
    2. Sampaio, Henrique César & Dias, Rubens Alves & Balestieri, José Antônio Perrella, 2013. "Sustainable urban energy planning: The case study of a tropical city," Applied Energy, Elsevier, vol. 104(C), pages 924-935.
    3. Sadeghi, Mehdi & Mirshojaeian Hosseini, Hossein, 2006. "Energy supply planning in Iran by using fuzzy linear programming approach (regarding uncertainties of investment costs)," Energy Policy, Elsevier, vol. 34(9), pages 993-1003, June.
    4. Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun & Wu, Qiong, 2010. "Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 87(12), pages 3642-3651, December.
    5. Groscurth, H.-M. & Bruckner, Th. & Kümmel, R., 1995. "Modeling of energy-services supply systems," Energy, Elsevier, vol. 20(9), pages 941-958.
    6. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Tan, Q., 2009. "Identification of optimal strategies for energy management systems planning under multiple uncertainties," Applied Energy, Elsevier, vol. 86(4), pages 480-495, April.
    7. Ramanathan, R. & Ganesh, L. S., 1995. "Energy resource allocation incorporating qualitative and quantitative criteria: An integrated model using goal programming and AHP," Socio-Economic Planning Sciences, Elsevier, vol. 29(3), pages 197-218, September.
    8. Frei, Christoph W. & Haldi, Pierre-Andre & Sarlos, Gerard, 2003. "Dynamic formulation of a top-down and bottom-up merging energy policy model," Energy Policy, Elsevier, vol. 31(10), pages 1017-1031, August.
    9. Cormio, C. & Dicorato, M. & Minoia, A. & Trovato, M., 2003. "A regional energy planning methodology including renewable energy sources and environmental constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 99-130, April.
    10. Bruckner, Th. & Groscurth, H.-M. & Kümmel, R., 1997. "Competition and synergy between energy technologies in municipal energy systems," Energy, Elsevier, vol. 22(10), pages 1005-1014.
    11. Borges, Ana Rosa & Antunes, Carlos Henggeler, 2003. "A fuzzy multiple objective decision support model for energy-economy planning," European Journal of Operational Research, Elsevier, vol. 145(2), pages 304-316, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    2. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    3. Dong, C. & Huang, G.H. & Cai, Y.P. & Xu, Y., 2011. "An interval-parameter minimax regret programming approach for power management systems planning under uncertainty," Applied Energy, Elsevier, vol. 88(8), pages 2835-2845, August.
    4. Sampaio, Henrique César & Dias, Rubens Alves & Balestieri, José Antônio Perrella, 2013. "Sustainable urban energy planning: The case study of a tropical city," Applied Energy, Elsevier, vol. 104(C), pages 924-935.
    5. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    6. Raphaële Thery & Pascale Zarate, 2009. "Energy planning: a multi-level and multicriteria decision making structure proposal," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 17(3), pages 265-274, September.
    7. Laha, Priyanka & Chakraborty, Basab, 2017. "Energy model – A tool for preventing energy dysfunction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 95-114.
    8. Arnette, Andrew & Zobel, Christopher W., 2012. "An optimization model for regional renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4606-4615.
    9. Kayakutlu, Gulgun & Daim, Tugrul & Kunt, Meltem & Altay, Ayca & Suharto, Yulianto, 2017. "Scenarios for regional waste management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1323-1335.
    10. Raja Jayaraman & Danilo Liuzzi & Cinzia Colapinto & Tufail Malik, 2017. "A fuzzy goal programming model to analyze energy, environmental and sustainability goals of the United Arab Emirates," Annals of Operations Research, Springer, vol. 251(1), pages 255-270, April.
    11. Q. Lin & G. Huang, 2011. "Interval-fuzzy stochastic optimization for regional energy systems planning and greenhouse-gas emission management under uncertainty—a case study for the Province of Ontario, Canada," Climatic Change, Springer, vol. 104(2), pages 353-378, January.
    12. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    13. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    14. Lin, Q.G. & Huang, G.H., 2009. "A dynamic inexact energy systems planning model for supporting greenhouse-gas emission management and sustainable renewable energy development under uncertainty--A case study for the City of Waterloo,," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1836-1853, October.
    15. Hu, Qing & Huang, Guohe & Cai, Yanpeng & Huang, Ying, 2011. "Feasibility-based inexact fuzzy programming for electric power generation systems planning under dual uncertainties," Applied Energy, Elsevier, vol. 88(12), pages 4642-4654.
    16. Vučijak, B. & Kupusović, T. & Midžić-Kurtagić, S. & Ćerić, A., 2013. "Applicability of multicriteria decision aid to sustainable hydropower," Applied Energy, Elsevier, vol. 101(C), pages 261-267.
    17. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    18. Guangxiao Hu & Xiaoming Ma & Junping Ji, 2017. "A Stochastic Optimization Model for Carbon Mitigation Path under Demand Uncertainty of the Power Sector in Shenzhen, China," Sustainability, MDPI, vol. 9(11), pages 1-12, October.
    19. Zhu, Y. & Li, Y.P. & Huang, G.H., 2012. "Planning municipal-scale energy systems under functional interval uncertainties," Renewable Energy, Elsevier, vol. 39(1), pages 71-84.
    20. Chen, C. & Li, Y.P. & Huang, G.H., 2016. "Interval-fuzzy municipal-scale energy model for identification of optimal strategies for energy management – A case study of Tianjin, China," Renewable Energy, Elsevier, vol. 86(C), pages 1161-1177.

    More about this item

    Keywords

    renewable energy finance; financial actors; climate finance; energy access; renewable energy policy.;
    All these keywords.

    JEL classification:

    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2019-05-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.