Advanced Search
MyIDEAS: Login to save this paper or follow this series

Behavior in a dynamic decision problem: An analysis of experimental evidence using a bayesian type classification algorithm

Contents:

Author Info

  • Daniel Houser

    (George Mason University)

  • Michael Keane

    (Yale University)

  • Kevin McCabe

    (George Mason University)

Abstract

It has been long recognized that different people may use different strategies, or decision rules, when playing games or dealing with other complex decision problems. We provide a new Bayesian procedure for drawing inferences about the nature and number of decision rules that are present in a population of agents. We show that the algorithm performs well in both a Monte Carlo study and in an empirical application. We apply our procedure to analyze the actual behavior of subjects who are confronted with a difficult dynamic stochastic decision problem in a laboratory setting. The procedure does an excellent job of grouping the subjects into easily interpretable types. Given the difficultly of the decision problem, we were surprised to find that nearly a third of subjects were a “Near Rational” type that played a good approximation to the optimal decision rule. More than 40% of subjects followed a rule that we describe as “fatalistic,” since they play as if they don’t appreciate the extent to which payoffs are a controlled stochastic process. And about a quarter of the subjects are classified as “Confused,” since they play the game quite poorly. Interestingly, we find that those subjects who practiced most before playing the game for money were the most likely to play poorly. Thus, lack of effort does not seem to account for poor performance. It is our hope that, in future work, our type classification algorithm will facilitate the positive analysis of peoples’ behavior in many types of complex decision problems.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://128.118.178.162/eps/exp/papers/0211/0211001.pdf
Download Restriction: no

Bibliographic Info

Paper provided by EconWPA in its series Experimental with number 0211001.

as in new window
Length: 60 pages
Date of creation: 11 Nov 2002
Date of revision:
Handle: RePEc:wpa:wuwpex:0211001

Note: Type of Document - PDF; prepared on IBM PC; to print on PostScript; pages: 60 ; figures: included
Contact details of provider:
Web page: http://128.118.178.162

Related research

Keywords: behavioral experiments type-classification bayesian;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Goeree, Jacob K. & Holt, Charles A. & Palfrey, Thomas R., 2003. "Risk averse behavior in generalized matching pennies games," Games and Economic Behavior, Elsevier, vol. 45(1), pages 97-113, October.
  2. Jacob K. Goeree & Charles A. Holt & Thomas R. Palfrey, 2000. "Quantal Response Equilibrium and Overbidding in Private-Value Auctions," Virginia Economics Online Papers 345, University of Virginia, Department of Economics.
  3. Ellison, Glenn & Fudenberg, Drew, 1993. "Rules of Thumb for Social Learning," Scholarly Articles 3196332, Harvard University Department of Economics.
  4. Houser, Daniel & Winter, Joachim, 2004. "How Do Behavioral Assumptions Affect Structural Inference? Evidence from a Laboratory Experiment," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 64-79, January.
  5. McKelvey, Richard D & Palfrey, Thomas R, 1992. "An Experimental Study of the Centipede Game," Econometrica, Econometric Society, vol. 60(4), pages 803-36, July.
  6. McCabe, Kevin & Houser, Daniel & Ryan, Lee & Smith, Vernon & Trouard, Ted, 2001. "A Functional Imaging Study of Cooperation in Two-Person reciprocal Exchange," MPRA Paper 5172, University Library of Munich, Germany.
  7. repec:att:wimass:9309 is not listed on IDEAS
  8. Keane, Michael P & Wolpin, Kenneth I, 1997. "The Career Decisions of Young Men," Journal of Political Economy, University of Chicago Press, vol. 105(3), pages 473-522, June.
  9. Braunstein, Yale M & Schotter, Andrew, 1982. "Labor Market Search: An Experimental Study," Economic Inquiry, Western Economic Association International, vol. 20(1), pages 133-44, January.
  10. Cyert, Richard M & DeGroot, Morris H, 1974. "Rational Expectations and Bayesian Analysis," Journal of Political Economy, University of Chicago Press, vol. 82(3), pages 521-36, May/June.
  11. Michael P. Keane & Kenneth I. Wolpin, 1994. "The solution and estimation of discrete choice dynamic programming models by simulation and interpolation: Monte Carlo evidence," Staff Report 181, Federal Reserve Bank of Minneapolis.
  12. Geweke, John & Keane, Michael, 2001. "Computationally intensive methods for integration in econometrics," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 56, pages 3463-3568 Elsevier.
  13. Harald Uhlig & Martin Lettau, 1999. "Rules of Thumb versus Dynamic Programming," American Economic Review, American Economic Association, vol. 89(1), pages 148-174, March.
  14. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
  15. Cox, James C & Oaxaca, Ronald L, 1989. " Laboratory Experiments with a Finite-Horizon Job-Search Model," Journal of Risk and Uncertainty, Springer, vol. 2(3), pages 301-29, September.
  16. Jim Engle-Warnick, 2000. "Inferring Strategies from Observed Actions: A Nonparametric Binary Tree Classification Approach," Econometrics 0004002, EconWPA, revised 02 Aug 2001.
  17. El-Gamal, Mahmoud A. & Palfrey, Thomas R., 1995. "Vertigo: Comparing structural models of imperfect behavior in experimental games," Games and Economic Behavior, Elsevier, vol. 8(2), pages 322-348.
  18. Andreoni, James, 1995. "Cooperation in Public-Goods Experiments: Kindness or Confusion?," American Economic Review, American Economic Association, vol. 85(4), pages 891-904, September.
  19. Daniel Houser & Robert Kurzban, 2002. "Revisiting Kindness and Confusion in Public Goods Experiments," American Economic Review, American Economic Association, vol. 92(4), pages 1062-1069, September.
  20. Hey, John D., 1987. "Still searching," Journal of Economic Behavior & Organization, Elsevier, vol. 8(1), pages 137-144, March.
  21. Houser, Daniel, 2003. "Bayesian analysis of a dynamic stochastic model of labor supply and saving," Journal of Econometrics, Elsevier, vol. 113(2), pages 289-335, April.
  22. Geweke, John & Houser, Dan & Keane, Michael, 1999. "Simulation Based Inference for Dynamic Multinomial Choice Models," MPRA Paper 54279, University Library of Munich, Germany.
  23. Cox, James C & Oaxaca, Ronald L, 1992. "Direct Tests of the Reservation Wage Property," Economic Journal, Royal Economic Society, vol. 102(415), pages 1423-32, November.
  24. Harrison, Glenn W & Morgan, Peter, 1990. "Search Intensity in Experiments," Economic Journal, Royal Economic Society, vol. 100(401), pages 478-86, June.
  25. Haltiwanger, John & Waldman, Michael, 1985. "Rational Expectations and the Limits of Rationality: An Analysis of Heterogeneity," American Economic Review, American Economic Association, vol. 75(3), pages 326-40, June.
  26. El-Gamal, Mahmoud A. & Grether, David M., 1995. "Are People Bayesian? Uncovering Behavioral Strategies," Working Papers 919, California Institute of Technology, Division of the Humanities and Social Sciences.
  27. John Duffy & Jim Warnick, 1999. "Using Symbolic Regression to Infer Strategies from Experimental Data," Computing in Economics and Finance 1999 1033, Society for Computational Economics.
  28. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
  29. Charles A. Holt & Jacob K. Goeree, 1999. "Stochastic Game Theory: For Playing Games, Not Just for Doing Theory," Virginia Economics Online Papers 306, University of Virginia, Department of Economics.
  30. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpex:0211001. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.