IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/54279.html
   My bibliography  Save this paper

Simulation Based Inference for Dynamic Multinomial Choice Models

Author

Listed:
  • Geweke, John
  • Houser, Dan
  • Keane, Michael

Abstract

Our goal in this chapter is to explain concretely how to implement simulation methods in a very general class of models that are extremely useful in applied work: dynamic discrete choice models where one has available a panel of multinomial choice histories and partially observed payoffs. Moreover, the techniques we describe are directly applicable to a general class of models that includes static discrete choice models, the Heckman (1976) selection model, and all of the Heckman (1981) models (such as static and dynamic Bernoulli models, Markov models, and renewal processes.) The particular procedure that we describe derives from a suggestion by Geweke and Keane (1999a), and has the advantages that it does not require the econometrician to solve the agents’ dynamic optimization problem, or to make strong assumptions about the way individuals form expectations.

Suggested Citation

  • Geweke, John & Houser, Dan & Keane, Michael, 1999. "Simulation Based Inference for Dynamic Multinomial Choice Models," MPRA Paper 54279, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:54279
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/54279/1/MPRA_paper_54279.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    2. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    3. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    4. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606.
    5. V. Joseph Hotz & Robert A. Miller, 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 497-529.
    6. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    7. Lancaster, Tony, 1997. "Exact Structural Inference in Optimal Job-Search Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(2), pages 165-179, April.
    8. Geweke, John, 1996. "Monte carlo simulation and numerical integration," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 15, pages 731-800, Elsevier.
    9. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590.
    10. Keane, Michael P & Wolpin, Kenneth I, 1997. "The Career Decisions of Young Men," Journal of Political Economy, University of Chicago Press, vol. 105(3), pages 473-522, June.
    11. Keane, Michael P & Wolpin, Kenneth I, 1994. "The Solution and Estimation of Discrete Choice Dynamic Programming Models by Simulation and Interpolation: Monte Carlo Evidence," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 648-672, November.
    12. A. D. Roy, 1951. "Some Thoughts On The Distribution Of Earnings," Oxford Economic Papers, Oxford University Press, vol. 3(2), pages 135-146.
    13. Zvi Eckstein & Kenneth I. Wolpin, 1989. "The Specification and Estimation of Dynamic Stochastic Discrete Choice Models: A Survey," Journal of Human Resources, University of Wisconsin Press, vol. 24(4), pages 562-598.
    14. Wolpin, Kenneth I, 1984. "An Estimable Dynamic Stochastic Model of Fertility and Child Mortality," Journal of Political Economy, University of Chicago Press, vol. 92(5), pages 852-874, October.
    15. Manski, Charles F., 1993. "Dynamic choice in social settings : Learning from the experiences of others," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 121-136, July.
    16. Heckman, James J & Sedlacek, Guilherme, 1985. "Heterogeneity, Aggregation, and Market Wage Functions: An Empirical Model of Self-selection in the Labor Market," Journal of Political Economy, University of Chicago Press, vol. 93(6), pages 1077-1125, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Carneiro & Karsten T. Hansen & James J. Heckman, 2003. "Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College," NBER Working Papers 9546, National Bureau of Economic Research, Inc.
    2. Carneiro, Pedro & Hansen, Karsten T. & Heckman, James J., 2003. "Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College Choice," IZA Discussion Papers 767, Institute of Labor Economics (IZA).
    3. Susumu Imai & Neelam Jain & Andrew Ching, 2009. "Bayesian Estimation of Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 77(6), pages 1865-1899, November.
    4. Daniel Houser & Michael Keane & Kevin McCabe, 2004. "Behavior in a Dynamic Decision Problem: An Analysis of Experimental Evidence Using a Bayesian Type Classification Algorithm," Econometrica, Econometric Society, vol. 72(3), pages 781-822, May.
    5. Houser, Daniel & Winter, Joachim, 2000. "Time preference and decision rules in a price search experiment," Sonderforschungsbereich 504 Publications 01-34, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    6. Houser, Daniel, 2003. "Bayesian analysis of a dynamic stochastic model of labor supply and saving," Journal of Econometrics, Elsevier, vol. 113(2), pages 289-335, April.
    7. Daniel Houser & Kevin McCabe & Michael Keane & Antoine Bechara, 2003. "Heuristics Used By Humans With Prefrontal Cortex Damage: Toward An Empirical Model Of Phineas Gage," Experimental 0308002, University Library of Munich, Germany.
    8. Houser, Daniel & Bechara, Antoine & Keane, Michael & McCabe, Kevin & Smith, Vernon, 2005. "Identifying individual differences: An algorithm with application to Phineas Gage," Games and Economic Behavior, Elsevier, vol. 52(2), pages 373-385, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    2. Houser, Daniel, 2003. "Bayesian analysis of a dynamic stochastic model of labor supply and saving," Journal of Econometrics, Elsevier, vol. 113(2), pages 289-335, April.
    3. Keane, Michael P. & Todd, Petra E. & Wolpin, Kenneth I., 2011. "The Structural Estimation of Behavioral Models: Discrete Choice Dynamic Programming Methods and Applications," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 4, pages 331-461, Elsevier.
    4. Belzil, Christian, 2007. "The return to schooling in structural dynamic models: a survey," European Economic Review, Elsevier, vol. 51(5), pages 1059-1105, July.
    5. Victor Aguirregabiria & Arvind Magesan, 2013. "Euler Equations for the Estimation of Dynamic Discrete Choice Structural Models," Advances in Econometrics, in: Structural Econometric Models, volume 31, pages 3-44, Emerald Group Publishing Limited.
    6. Jaap Abbring & James Heckman, 2008. "Dynamic policy analysis," CeMMAP working papers CWP05/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Sebastian Galiani & Juan Pantano, 2021. "Structural Models: Inception and Frontier," NBER Working Papers 28698, National Bureau of Economic Research, Inc.
    8. James J. Heckman, 2005. "Micro Data, Heterogeneity and the Evaluation of Public Policy Part 2," The American Economist, Sage Publications, vol. 49(1), pages 16-44, March.
    9. Aguirregabiria, Victor & Magesan, Arvind, 2013. "Euler Equations for the Estimation of Dynamic Discrete Choice Structural," MPRA Paper 46056, University Library of Munich, Germany.
    10. Victor Aguirregabiria & Pedro Mira, 2000. "Structural Models Involving Highly Dimensional Fixed Point Problems: An Asymptotically Efficient Two-Stage Estimator," Econometric Society World Congress 2000 Contributed Papers 1702, Econometric Society.
    11. Arcidiacono, Peter & Miller, Robert A., 2020. "Identifying dynamic discrete choice models off short panels," Journal of Econometrics, Elsevier, vol. 215(2), pages 473-485.
    12. Le-Yu Chen, 2009. "Identification of structural dynamic discrete choice models," CeMMAP working papers CWP08/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Keane, Michael P & Wolpin, Kenneth I, 1994. "The Solution and Estimation of Discrete Choice Dynamic Programming Models by Simulation and Interpolation: Monte Carlo Evidence," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 648-672, November.
    14. Heckman, James J. & Navarro, Salvador, 2007. "Dynamic discrete choice and dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 136(2), pages 341-396, February.
    15. Maria Casanova-Rivas, 2008. "Dynamic Complementarities: A Computational and Empirical Analysis of Couples' Retirement Decisions," 2008 Meeting Papers 1073, Society for Economic Dynamics.
    16. Steven T Berry & Giovanni Compiani, 2023. "An Instrumental Variable Approach to Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(4), pages 1724-1758.
    17. Andrew Ching & Susumu Imai & Masakazu Ishihara & Neelam Jain, 2012. "A practitioner’s guide to Bayesian estimation of discrete choice dynamic programming models," Quantitative Marketing and Economics (QME), Springer, vol. 10(2), pages 151-196, June.
    18. Peter Arcidiacono & Holger Sieg & Frank Sloan, 2007. "Living Rationally Under The Volcano? An Empirical Analysis Of Heavy Drinking And Smoking," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(1), pages 37-65, February.
    19. Victor Aguirregabiria & Pedro Mira, 2002. "Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models," Econometrica, Econometric Society, vol. 70(4), pages 1519-1543, July.
    20. Zvi Eckstein & Osnat Lifshitz, 2011. "Dynamic Female Labor Supply," Econometrica, Econometric Society, vol. 79(6), pages 1675-1726, November.

    More about this item

    Keywords

    Dynamic Discrete Choice Models; Dynamic Programming; Discrete Choice; Simulation;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:54279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.