IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-21-19.html
   My bibliography  Save this paper

The Effect of Changing Marginal-Cost to Physical-Order Dispatch in the Power Sector

Author

Listed:
  • Gutiérrez-Meave, Raúl
  • Rosellón, Juan
  • Sarmiento, Luis

Abstract

The analysis of local environmental policies is essential when evaluating the consistency of national public policies vis-à-vis the compliance of global agreements to reduce climate change. This study explores one of these policies; the 2021 Mexican reform to change electric power dispatch from a marginal-cost-based to a command and control physical system prioritizing power generation from the state power company. The new law forces the dispatch of the state company power facilities before private power producers. We use the GENeSYS-MOD techno-economic model to determine the reform’s effect on the power system’s generation mix, cost structure, and anthropogenic emissions. For this, we optimize the model under three distinct scenarios; a business-as-usual scenario with no changes to the merit order, a model with the new physical order dispatch, and an additional case where in addition to the shift to the physical dispatch, we reduce the price of fuel oil below natural gas prices to simulate the current behavior of the power company. It is relevant to note that we optimize the energy system without any assumption regarding renewable targets or climate goals because of political uncertainty and the need of pinpoint the effect of the merit order change while avoiding possible variations in the state-space arising from other constraints. Our results show that by 2050, the new dispatch rule increases the market power of the state company to 99% of total generation and decreases the share of renewable technologies in the generation mix from 72%to 51%. Additionally, cumulative power sector emissions increase by 563 Mega-tons of CO2, which with the current cost of carbon in the European Emissions Trading System translates to around 36 billion Euros.

Suggested Citation

  • Gutiérrez-Meave, Raúl & Rosellón, Juan & Sarmiento, Luis, 2021. "The Effect of Changing Marginal-Cost to Physical-Order Dispatch in the Power Sector," RFF Working Paper Series 21-19, Resources for the Future.
  • Handle: RePEc:rff:dpaper:dp-21-19
    as

    Download full text from publisher

    File URL: https://www.rff.org/documents/3049/WP_21-19_WK8F3YU.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hanna, Rema & Oliva, Paulina, 2015. "The effect of pollution on labor supply: Evidence from a natural experiment in Mexico City," Journal of Public Economics, Elsevier, vol. 122(C), pages 68-79.
    2. Hancevic, Pedro I. & Nuñez, Hector M., 2017. "Distributed Photovoltaic Power Generation: A Widespread Application in the Mexican Residential Sector," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258129, Agricultural and Applied Economics Association.
    3. Dmitrii Bogdanov & Javier Farfan & Kristina Sadovskaia & Arman Aghahosseini & Michael Child & Ashish Gulagi & Ayobami Solomon Oyewo & Larissa Souza Noel Simas Barbosa & Christian Breyer, 2019. "Radical transformation pathway towards sustainable electricity via evolutionary steps," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    4. Heiner von Lüpke & Mareike Well, 2020. "Analyzing climate and energy policy integration: the case of the Mexican energy transition," Climate Policy, Taylor & Francis Journals, vol. 20(7), pages 832-845, July.
    5. Tom Y. Chang & Joshua Graff Zivin & Tal Gross & Matthew Neidell, 2019. "The Effect of Pollution on Worker Productivity: Evidence from Call Center Workers in China," American Economic Journal: Applied Economics, American Economic Association, vol. 11(1), pages 151-172, January.
    6. von Lüpke, Heiner & Well, Mareike, 2020. "Analyzing climate and energy policy integration: the case of the Mexican energy transition," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 20(7), pages 832-845.
    7. Christopher R. Knittel & Douglas L. Miller & Nicholas J. Sanders, 2016. "Caution, Drivers! Children Present: Traffic, Pollution, and Infant Health," The Review of Economics and Statistics, MIT Press, vol. 98(2), pages 350-366, May.
    8. Hancevic, Pedro I. & Nuñez, Hector M. & Rosellon, Juan, 2017. "Distributed photovoltaic power generation: Possibilities, benefits, and challenges for a widespread application in the Mexican residential sector," Energy Policy, Elsevier, vol. 110(C), pages 478-489.
    9. Zozmann, Elmar & Göke, Leonard & Kendziorski, Mario & Rodriguez del Angel, Citlali & von Hirschhausen, Christian & Winkler, Johanna, 2021. "100% Renewable Energy Scenarios for North America—Spatial Distribution and Network Constraints," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 14(3).
    10. Seema Jayachandran, 2009. "Air Quality and Early-Life Mortality: Evidence from Indonesia’s Wildfires," Journal of Human Resources, University of Wisconsin Press, vol. 44(4).
    11. Elmar Zozmann & Leonard Göke & Mario Kendziorski & Citlali Rodriguez del Angel & Christian von Hirschhausen & Johanna Winkler, 2021. "100% Renewable Energy Scenarios for North America—Spatial Distribution and Network Constraints," Energies, MDPI, vol. 14(3), pages 1-17, January.
    12. Giarola, Sara & Molar-Cruz, Anahi & Vaillancourt, Kathleen & Bahn, Olivier & Sarmiento, Luis & Hawkes, Adam & Brown, Maxwell, 2021. "The role of energy storage in the uptake of renewable energy: A model comparison approach," Energy Policy, Elsevier, vol. 151(C).
    13. Sarmiento, Luis & Molar-Cruz, Anahi & Avraam, Charalampos & Brown, Maxwell & Rosellón, Juan & Siddiqui, Sauleh & Rodríguez, Baltazar Solano, 2021. "Mexico and U.S. power systems under variations in natural gas prices," Energy Policy, Elsevier, vol. 156(C).
    14. Bartholdsen, Hans-Karl & Eidens, Anna & Löffler, Konstantin & Seehaus, Frederik & Wejda, Felix & Burandt, Thorsten & Oei, Pao-Yu & Kemfert, Claudia & Hirschhausen, Christian von, 2019. "Pathways for Germany's Low-Carbon Energy Transformation Towards 2050," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(15), pages 1-33.
    15. Luis Sarmiento, 2020. "Waiting for My Sentence: Air Pollution and the Productivity of Court Rulings," Discussion Papers of DIW Berlin 1878, DIW Berlin, German Institute for Economic Research.
    16. Bréchet, Thierry & Hritonenko, Natali & Yatsenko, Yuri, 2016. "Domestic environmental policy and international cooperation for global commons," Resource and Energy Economics, Elsevier, vol. 44(C), pages 183-205.
    17. Luis Sarmiento & Thorsten Burandt & Konstantin Löffler & Pao-Yu Oei, 2019. "Analyzing Scenarios for the Integration of Renewable Energy Sources in the Mexican Energy System—An Application of the Global Energy System Model (GENeSYS-MOD)," Energies, MDPI, vol. 12(17), pages 1-24, August.
    18. Pao-Yu Oei & Karlo Hainsch & Konstantin Löffler & Christian von Hirschhausen & Franziska Holz & Claudia Kemfert, 2019. "A New Climate for Europe: 2030 Climate Targets Must Be More Ambitious," DIW Weekly Report, DIW Berlin, German Institute for Economic Research, vol. 9(40/41), pages 365-372.
    19. Linus Lawrenz & Bobby Xiong & Luise Lorenz & Alexandra Krumm & Hans Hosenfeld & Thorsten Burandt & Konstantin Löffler & Pao-Yu Oei & Christian Von Hirschhausen, 2018. "Exploring Energy Pathways for the Low-Carbon Transformation in India—A Model-Based Analysis," Energies, MDPI, vol. 11(11), pages 1-23, November.
    20. Howells, Mark & Rogner, Holger & Strachan, Neil & Heaps, Charles & Huntington, Hillard & Kypreos, Socrates & Hughes, Alison & Silveira, Semida & DeCarolis, Joe & Bazillian, Morgan & Roehrl, Alexander, 2011. "OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development," Energy Policy, Elsevier, vol. 39(10), pages 5850-5870, October.
    21. Karlo Hainsch & Leonard Göke & Claudia Kemfert & Pao-Yu Oei & Christian von Hirschhausen, 2020. "European Green Deal: Using Ambitious Climate Targets and Renewable Energy to Climb out of the Economic Crisis," DIW Weekly Report, DIW Berlin, German Institute for Economic Research, vol. 10(28/29), pages 303-310.
    22. Löffler, Konstantin & Burandt, Thorsten & Hainsch, Karlo & Oei, Pao-Yu, 2019. "Modeling the low-carbon transition of the European energy system - A quantitative assessment of the stranded assets problem," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 26, pages 1-15.
    23. Welsch, M. & Howells, M. & Bazilian, M. & DeCarolis, J.F. & Hermann, S. & Rogner, H.H., 2012. "Modelling elements of Smart Grids – Enhancing the OSeMOSYS (Open Source Energy Modelling System) code," Energy, Elsevier, vol. 46(1), pages 337-350.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarmiento, Luis & Burandt, Thorsten & Löffler, Konstantin & Oei, Pao-Yu, 2019. "Analyzing Scenarios for the Integration of Renewable Energy Sources in the Mexican Energy System," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(2019), pages 1-1.
    2. Luis Sarmiento, 2020. "I Am Innocent: Hourly Variations in Air Pollution and Crime Behavior," Discussion Papers of DIW Berlin 1879, DIW Berlin, German Institute for Economic Research.
    3. Julia Rechlitz & Luis Sarmiento & Aleksandar Zaklan, 2020. "Make Sure the Kids are OK: Indirect Effects of Ground-Level Ozone on Well-Being," Discussion Papers of DIW Berlin 1877, DIW Berlin, German Institute for Economic Research.
    4. Luis Sarmiento, 2020. "Waiting for My Sentence: Air Pollution and the Productivity of Court Rulings," Discussion Papers of DIW Berlin 1878, DIW Berlin, German Institute for Economic Research.
    5. Plazas-Niño, F.A. & Ortiz-Pimiento, N.R. & Montes-Páez, E.G., 2022. "National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Borgschulte, Mark & Molitor, David & Zou, Eric Yongchen, 2022. "Air Pollution and the Labor Market: Evidence from Wildfire Smoke," IZA Discussion Papers 15373, Institute of Labor Economics (IZA).
    7. Burandt, Thorsten, 2021. "Analyzing the necessity of hydrogen imports for net-zero emission scenarios in Japan," Applied Energy, Elsevier, vol. 298(C).
    8. Sarmiento, Luis & Wägner, Nicole & Zaklan, Aleksandar, 2021. "Effectiveness, Spillovers, and Well-Being Effects of Driving Restriction Policies," RFF Working Paper Series 21-13, Resources for the Future.
    9. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Colmer, Jonathan & Lin, Dajun & Liu, Siying & Shimshack, Jay, 2021. "Why are pollution damages lower in developed countries? Insights from high-Income, high-particulate matter Hong Kong," Journal of Health Economics, Elsevier, vol. 79(C).
    11. Luis Sarmiento & Thorsten Burandt & Konstantin Löffler & Pao-Yu Oei, 2019. "Analyzing Scenarios for the Integration of Renewable Energy Sources in the Mexican Energy System—An Application of the Global Energy System Model (GENeSYS-MOD)," Energies, MDPI, vol. 12(17), pages 1-24, August.
    12. Ahmad, Husnain F. & Gibson, Matthew & Nadeem, Fatiq & Nasim, Sanval & Rezaee, Arman, 2022. "Forecasts: Consumption, Production, and Behavioral Responses," IZA Discussion Papers 15831, Institute of Labor Economics (IZA).
    13. Wang, Yangjie & Chen, Xiaohong & Ren, Shenggang, 2019. "Clean energy adoption and maternal health: Evidence from China," Energy Economics, Elsevier, vol. 84(C).
    14. Joshua Graff Zivin & Matthew Neidell, 2013. "Environment, Health, and Human Capital," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 689-730, September.
    15. Michelle Marcus, 2021. "Pollution at schools and children's aerobic capacity," Health Economics, John Wiley & Sons, Ltd., vol. 30(12), pages 3016-3031, December.
    16. Helm, Ines & Koch, Nicolas & Rohlf, Alexander, 2023. "The effects of cash for clunkers on local air quality," Journal of Urban Economics, Elsevier, vol. 138(C).
    17. Agarwal, Sumit & Wang, Long & Yang, Yang, 2021. "Impact of transboundary air pollution on service quality and consumer satisfaction," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 357-380.
    18. Felix Holub & Laura Hospido & Ulrich J. Wagner, 2020. "Urban air pollution and sick leaves: evidence from social security data," Working Papers 2041, Banco de España.
    19. Yao, Yao & Li, Xue & Smyth, Russell & Zhang, Lin, 2022. "Air pollution and political trust in local government: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    20. Brooks, Nina & Biswas, Debashish & Hossin, Raduan & Yu, Alexander & Saha, Shampa & Saha, Senjuti & Saha, Samir K. & Luby, Stephen P., 2023. "Health consequences of small-scale industrial pollution: Evidence from the brick sector in Bangladesh," World Development, Elsevier, vol. 170(C).

    More about this item

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-21-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Resources for the Future (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.