Advanced Search
MyIDEAS: Login

Short-term GDP forecasting with a mixed frequency dynamic factor model with stochastic volatility

Contents:

Author Info

  • Marcellino, Massimiliano
  • Porqueddu, Mario
  • Venditti, Fabrizio

Abstract

In this paper we develop a mixed frequency dynamic factor model featuring stochastic shifts in the volatility of both the latent common factor and the idiosyncratic components. We take a Bayesian perspective and derive a Gibbs sampler to obtain the posterior density of the model parameters. This new tool is then used to investigate business cycle dynamics and for forecasting GDP growth at short-term horizons in the euro area. We discuss three sets of empirical results. First we use the model to evaluate the impact of macroeconomic releases on point and density forecast accuracy and on the width of forecast intervals. Second, we show how our setup allows to make a probabilistic assessment of the contribution of releases to forecast revisions. Third we design a pseudo out of sample forecasting exercise and examine point and density forecast accuracy. In line with findings in the Bayesian Vector Autoregressions (BVAR) literature we find that stochastic volatility contributes to an improvement in density forecast accuracy.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.cepr.org/pubs/dps/DP9334.asp
Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Paper provided by C.E.P.R. Discussion Papers in its series CEPR Discussion Papers with number 9334.

as in new window
Length:
Date of creation: Feb 2013
Date of revision:
Handle: RePEc:cpr:ceprdp:9334

Contact details of provider:
Postal: Centre for Economic Policy Research, 77 Bastwick Street, London EC1V 3PZ.
Phone: 44 - 20 - 7183 8801
Fax: 44 - 20 - 7183 8820

Order Information:
Email:

Related research

Keywords: Business cycle; Forecasting; Mixed-frequency data; Nonlinear models; Nowcasting;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Elena Angelini & Gonzalo Camba-Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2008. "Short-Term Forecasts of Euro Area GDP Growth," Working Papers ECARES ECARES 2008-035, ULB -- Universite Libre de Bruxelles.
  2. Korobilis, Dimitris, 2009. "Assessing the transmission of monetary policy using dynamic factor models," MPRA Paper 27593, University Library of Munich, Germany, revised Nov 2010.
  3. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
  4. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-17, October.
  5. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
  6. Marcellino, Massimiliano & Schumacher, Christian, 2007. "Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP," Discussion Paper Series 1: Economic Studies 2007,34, Deutsche Bundesbank, Research Centre.
  7. Anne Sofie Jore & James Mitchell & Shaun Vahey, 2008. "Combining Forecast Densities from VARs with Uncertain Instabilities," Reserve Bank of New Zealand Discussion Paper Series DP2008/18, Reserve Bank of New Zealand.
  8. Banbura, Marta & Rünstler, Gerhard, 2007. "A look into the factor model black box: publication lags and the role of hard and soft data in forecasting GDP," Working Paper Series 0751, European Central Bank.
  9. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 371-89, October.
  10. Bańbura, Marta & Modugno, Michele, 2010. "Maximum likelihood estimation of factor models on data sets with arbitrary pattern of missing data," Working Paper Series 1189, European Central Bank.
  11. Camacho, Maximo & Pérez-Quirós, Gabriel, 2009. "Introducing the Euro-STING: Short-Term Indicator of Euro Area Growth," CEPR Discussion Papers 7343, C.E.P.R. Discussion Papers.
  12. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
  13. Clark, Todd E., 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 327-341.
  14. Mario Forni & Filippo Altissimo & Riccardo Cristadoro & Marco Lippi & Giovanni Veronese., 2008. "New Eurocoin: Tracking Economic Growth in Real Time," Center for Economic Research (RECent) 020, University of Modena and Reggio E., Dept. of Economics.
  15. Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
  16. Timothy Cogley & Thomas Sargent, . "Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII US," Working Papers 2133503, Department of Economics, W. P. Carey School of Business, Arizona State University.
  17. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
  18. Baumeister, Christiane & Liu, Philip & Mumtaz, Haroon, 2010. "Changes in the transmission of monetary policy: evidence from a time-varying factor-augmented VAR," Bank of England working papers 401, Bank of England.
  19. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
  20. John Geweke, 1991. "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments," Staff Report 148, Federal Reserve Bank of Minneapolis.
  21. Cecilia Frale & Massimiliano Marcellino & Gian Luigi Mazzi & Tommaso Proietti, 2011. "EUROMIND: a monthly indicator of the euro area economic conditions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(2), pages 439-470, 04.
  22. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-74, October.
  23. Claudia FORONI & Massimiliano MARCELLINO, 2012. "A Comparison of Mixed Frequency Approaches for Modelling Euro Area Macroeconomic Variables," Economics Working Papers ECO2012/07, European University Institute.
  24. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Paper 1227, Federal Reserve Bank of Cleveland.
  2. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:9334. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.