Advanced Search
MyIDEAS: Login to save this paper or follow this series

FaMIDAS: A Mixed Frequency Factor Model with MIDAS structure

Contents:

Author Info

  • Cecilia Frale

    ()
    (MEF-Ministry of the Economy and Finance-Italy, Treasury Department)

  • Libero Monteforte

    ()
    (Bank of Italy and MEF-Ministry of the Economy and Finance-Italy, Treasury Department)

Abstract

In this paper a dynamic factor model with mixed frequency is proposed (FaMIDAS), where the past observations of high frequency indicators are used following the MIDAS approach. This structure is able to represent with richer dynamics the information content of the economic indicators and produces smoothed factors and forecasts. In addition, the Kalman filter is applied, which is particularly suited for dealing with unbalanced data set and revisions in the preliminary data. In the empirical application for the Italian quarterly GDP the short-term forecasting performance is evaluated against other mixed frequency models in a pseudo-real time experiment, also allowing for pooled forecast from factor models.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.bancaditalia.it/pubblicazioni/econo/temidi/td11/td788_11/en_td_788_11/en_tema_788.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Bank of Italy, Economic Research and International Relations Area in its series Temi di discussione (Economic working papers) with number 788.

as in new window
Length:
Date of creation: Jan 2011
Date of revision:
Handle: RePEc:bdi:wptemi:td_788_11

Contact details of provider:
Postal: Via Nazionale, 91 - 00184 Roma
Web page: http://www.bancaditalia.it
More information through EDIRC

Related research

Keywords: mixed frequency models; dynamic factor models; MIDAS; forecasting.;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, 08.
  2. Mario Forni & Filippo Altissimo & Riccardo Cristadoro & Marco Lippi & Giovanni Veronese., 2008. "New Eurocoin: Tracking Economic Growth in Real Time," Center for Economic Research (RECent) 020, University of Modena and Reggio E., Dept. of Economics.
  3. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
  4. Frale, Cecilia & Marcellino, Massimiliano & Mazzi, Gian Luigi & Proietti, Tommaso, 2008. "A Monthly Indicator of the Euro Area GDP," CEPR Discussion Papers 7007, C.E.P.R. Discussion Papers.
  5. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
  6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  7. Tommaso Proietti & Filippo Moauro, 2006. "Dynamic factor analysis with non-linear temporal aggregation constraints," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 281-300.
  8. Tommaso Proietti, 2006. "Temporal disaggregation by state space methods: Dynamic regression methods revisited," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 357-372, November.
  9. Libero Monteforte & Gianluca Moretti, 2013. "Real‐Time Forecasts of Inflation: The Role of Financial Variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(1), pages 51-61, 01.
  10. Filippo Moauro & Giovanni Savio, 2005. "Temporal disaggregation using multivariate structural time series models," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 214-234, 07.
  11. Karim Barhoumi & Szilard Benk & Riccardo Cristadoro & Ard Den Reijer & Audrone Jakaitiene & Piotr Jelonek & António Rua & Gerhard Rünstler & Karsten Ruth & Christophe Van Nieuwenhuyze, 2008. "Short-term forecasting of GDP using large monthly datasets - a pseudo real-time forecast evaluation exercise," Occasional Paper Series 84, European Central Bank.
  12. Cecilia Frale & Massimiliano Marcellino & Gian Luigi Mazzi & Tommaso Proietti, . "Survey Data as Coincident or Leading Indicators," Working Papers 3, Department of the Treasury, Ministry of the Economy and of Finance.
  13. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
  14. Stefan Mittnik & Peter A. Zadrozny, 2004. "Forecasting Quarterly German GDP at Monthly Intervals Using Monthly IFO Business Conditions Data," CESifo Working Paper Series 1203, CESifo Group Munich.
  15. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
  16. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Working Paper Series 42_10, The Rimini Centre for Economic Analysis.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Filippo Maria Pericoli & Roberto Galli & Cecilia Frale & Stefania Pozzuoli, 2013. "Bank lending in a cointegrated VAR model," Working Papers 8, Department of the Treasury, Ministry of the Economy and of Finance.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:bdi:wptemi:td_788_11. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.