IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1309.1492.html
   My bibliography  Save this paper

Commodity futures and market efficiency

Author

Listed:
  • Ladislav Kristoufek
  • Miloslav Vosvrda

Abstract

We analyze the market efficiency of 25 commodity futures across various groups -- metals, energies, softs, grains and other agricultural commodities. To do so, we utilize recently proposed Efficiency Index to find that the most efficient of all the analyzed commodities is heating oil, closely followed by WTI crude oil, cotton, wheat and coffee. On the other end of the ranking, we detect live cattle and feeder cattle. The efficiency is also found to be characteristic for specific groups of commodities -- energy commodities being the most efficient and the other agricultural commodities (formed mainly of livestock) the least efficient groups. We also discuss contributions of the long-term memory, fractal dimension and approximate entropy to the total inefficiency. Last but not least, we come across the nonstandard relationship between the fractal dimension and Hurst exponent. For the analyzed dataset, the relationship between these two is positive meaning that local persistence (trending) is connected to global anti-persistence. We attribute this to specifics of commodity futures which might be predictable in a short term and locally but in a long term, they return to their fundamental price.

Suggested Citation

  • Ladislav Kristoufek & Miloslav Vosvrda, 2013. "Commodity futures and market efficiency," Papers 1309.1492, arXiv.org.
  • Handle: RePEc:arx:papers:1309.1492
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1309.1492
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Narayan, Paresh Kumar & Narayan, Seema & Zheng, Xinwei, 2010. "Gold and oil futures markets: Are markets efficient?," Applied Energy, Elsevier, vol. 87(10), pages 3299-3303, October.
    2. Charles, Amélie & Darné, Olivier, 2009. "The efficiency of the crude oil markets: Evidence from variance ratio tests," Energy Policy, Elsevier, vol. 37(11), pages 4267-4272, November.
    3. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2010. "Market Efficiency of Oil Spot and Futures: A Stochastic Dominance Approach," CIRJE F-Series CIRJE-F-705, CIRJE, Faculty of Economics, University of Tokyo.
    4. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    5. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    6. Alvarez-Ramirez, Jose & Alvarez, Jesus & Solis, Ricardo, 2010. "Crude oil market efficiency and modeling: Insights from the multiscaling autocorrelation pattern," Energy Economics, Elsevier, vol. 32(5), pages 993-1000, September.
    7. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2010. "Market efficiency of oil spot and futures: A mean-variance and stochastic dominance approach," Energy Economics, Elsevier, vol. 32(5), pages 979-986, September.
    8. Wang, Tao & Yang, Jian, 2010. "Nonlinearity and intraday efficiency tests on energy futures markets," Energy Economics, Elsevier, vol. 32(2), pages 496-503, March.
    9. Di Matteo, T. & Aste, T. & Dacorogna, M.M., 2003. "Scaling behaviors in differently developed markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 183-188.
    10. Lean, H.H. & McAleer, M.J. & Wong, W.-K., 2010. "Investor preferences for oil spot and futures based on mean-variance and stochastic dominance," Econometric Institute Research Papers EI 2010-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
    12. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2011. "Detrended fluctuation analysis on spot and futures markets of West Texas Intermediate crude oil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 864-875.
    13. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    14. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    15. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    16. repec:pri:cepsud:91malkiel is not listed on IDEAS
    17. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo, 2008. "Short-term predictability of crude oil markets: A detrended fluctuation analysis approach," Energy Economics, Elsevier, vol. 30(5), pages 2645-2656, September.
    18. S. Davies & P. Hall, 1999. "Fractal analysis of surface roughness by using spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 3-37.
    19. Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
    20. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    21. Zunino, Luciano & Tabak, Benjamin M. & Serinaldi, Francesco & Zanin, Massimiliano & Pérez, Darío G. & Rosso, Osvaldo A., 2011. "Commodity predictability analysis with a permutation information theory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 876-890.
    22. Tabak, Benjamin M. & Cajueiro, Daniel O., 2007. "Are the crude oil markets becoming weakly efficient over time? A test for time-varying long-range dependence in prices and volatility," Energy Economics, Elsevier, vol. 29(1), pages 28-36, January.
    23. Lee, Chien-Chiang & Lee, Jun-De, 2009. "Energy prices, multiple structural breaks, and efficient market hypothesis," Applied Energy, Elsevier, vol. 86(4), pages 466-479, April.
    24. Gebre-Mariam, Yohannes Kebede, 2011. "Testing for unit roots, causality, cointegration, and efficiency: The case of the northwest US natural gas market," Energy, Elsevier, vol. 36(5), pages 3489-3500.
    25. Lim, Kian-Ping, 2007. "Ranking market efficiency for stock markets: A nonlinear perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 445-454.
    26. Herbert, John H & Kreil, Erik, 1996. "US natural gas markets : How efficient are they?," Energy Policy, Elsevier, vol. 24(1), pages 1-5, January.
    27. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    28. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
    29. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    30. Kristoufek, Ladislav, 2012. "How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4252-4260.
    31. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 59-82, Winter.
    32. Martina, Esteban & Rodriguez, Eduardo & Escarela-Perez, Rafael & Alvarez-Ramirez, Jose, 2011. "Multiscale entropy analysis of crude oil price dynamics," Energy Economics, Elsevier, vol. 33(5), pages 936-947, September.
    33. Kim, Hongseok & Oh, Gabjin & Kim, Seunghwan, 2011. "Multifractal analysis of the Korean agricultural market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4286-4292.
    34. T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
    35. Panas, Epaminondas, 1991. "A weak form evaluation of the efficiency of the Rotterdam and Italian oil spot markets," Energy Economics, Elsevier, vol. 13(1), pages 26-32, January.
    36. Roll, Richard, 1972. "Interest Rates on Monetary Assets and Commodity Price Index Changes," Journal of Finance, American Finance Association, vol. 27(2), pages 251-277, May.
    37. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    38. Danthine, Jean-Pierre, 1977. "Martingale, market efficiency and commodity prices," European Economic Review, Elsevier, vol. 10(1), pages 1-17.
    39. Wang, Yudong & Liu, Li, 2010. "Is WTI crude oil market becoming weakly efficient over time?: New evidence from multiscale analysis based on detrended fluctuation analysis," Energy Economics, Elsevier, vol. 32(5), pages 987-992, September.
    40. Kim, Min Jae & Kim, Sehyun & Jo, Yong Hwan & Kim, Soo Yong, 2011. "Dependence structure of the commodity and stock markets, and relevant multi-spread strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3842-3854.
    41. Cajueiro, Daniel O. & Tabak, Benjamin M., 2004. "Evidence of long range dependence in Asian equity markets: the role of liquidity and market restrictions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(3), pages 656-664.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George P. Papaioannou & Christos Dikaiakos & Akylas C. Stratigakos & Panos C. Papageorgiou & Konstantinos F. Krommydas, 2019. "Testing the Efficiency of Electricity Markets Using a New Composite Measure Based on Nonlinear TS Tools," Energies, MDPI, vol. 12(4), pages 1-30, February.
    2. Kristoufek, Ladislav & Vosvrda, Miloslav, 2016. "Gold, currencies and market efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 27-34.
    3. Sensoy, Ahmet & Hacihasanoglu, Erk, 2014. "Time-varying long range dependence in energy futures markets," Energy Economics, Elsevier, vol. 46(C), pages 318-327.
    4. Ladislav Kristoufek & Miloslav Vosvrda, 2014. "Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
    5. Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
    6. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
    7. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
    8. Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
    9. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "Efficiency of Thai stock markets: Detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 204-209.
    10. Tiwari, Aviral Kumar & Umar, Zaghum & Alqahtani, Faisal, 2021. "Existence of long memory in crude oil and petroleum products: Generalised Hurst exponent approach," Research in International Business and Finance, Elsevier, vol. 57(C).
    11. Zhang, Bing, 2013. "Are the crude oil markets becoming more efficient over time? New evidence from a generalized spectral test," Energy Economics, Elsevier, vol. 40(C), pages 875-881.
    12. Kristoufek, Ladislav, 2019. "Are the crude oil markets really becoming more efficient over time? Some new evidence," Energy Economics, Elsevier, vol. 82(C), pages 253-263.
    13. Sibanjan Mishra, 2019. "Testing Martingale Hypothesis Using Variance Ratio Tests: Evidence from High-frequency Data of NCDEX Soya Bean Futures," Global Business Review, International Management Institute, vol. 20(6), pages 1407-1422, December.
    14. Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "Why the long-term auto-correlation has not been eliminated by arbitragers: Evidences from NYMEX," Energy Economics, Elsevier, vol. 59(C), pages 167-178.
    15. Asif, Raheel & Frömmel, Michael, 2022. "Testing Long memory in exchange rates and its implications for the adaptive market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    16. Anagnostidis, P. & Varsakelis, C. & Emmanouilides, C.J., 2016. "Has the 2008 financial crisis affected stock market efficiency? The case of Eurozone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 116-128.
    17. Siokis, Fotios M., 2018. "Credit market Jitters in the course of the financial crisis: A permutation entropy approach in measuring informational efficiency in financial assets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 266-275.
    18. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
    19. Yudong Wang & Chongfeng Wu, 2013. "Efficiency of Crude Oil Futures Markets: New Evidence from Multifractal Detrending Moving Average Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 42(4), pages 393-414, December.
    20. Zhang, Bing & Li, Xiao-Ming & He, Fei, 2014. "Testing the evolution of crude oil market efficiency: Data have the conn," Energy Policy, Elsevier, vol. 68(C), pages 39-52.

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1309.1492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.