Advanced Search
MyIDEAS: Login to save this article or follow this journal

Crude oil market efficiency and modeling: Insights from the multiscaling autocorrelation pattern

Contents:

Author Info

  • Alvarez-Ramirez, Jose
  • Alvarez, Jesus
  • Solis, Ricardo
Registered author(s):

    Abstract

    Empirical research on market inefficiencies focuses on the detection of autocorrelations in price time series. In the case of crude oil markets, statistical support is claimed for weak efficiency over a wide range of time-scales. However, the results are still controversial since theoretical arguments point to deviations from efficiency as prices tend to revert towards an equilibrium path. This paper studies the efficiency of crude oil markets by using lagged detrended fluctuation analysis (DFA) to detect delay effects in price autocorrelations quantified in terms of a multiscaling Hurst exponent (i.e., autocorrelations are dependent of the time scale). Results based on spot price data for the period 1986-2009 indicate important deviations from efficiency associated to lagged autocorrelations, so imposing the random walk for crude oil prices has pronounced costs for forecasting. Evidences in favor of price reversion to a continuously evolving mean underscores the importance of adequately incorporating delay effects and multiscaling behavior in the modeling of crude oil price dynamics.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V7G-5017HM9-1/2/b5d34f9245b57f710e315c49202a36eb
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Energy Economics.

    Volume (Year): 32 (2010)
    Issue (Month): 5 (September)
    Pages: 993-1000

    as in new window
    Handle: RePEc:eee:eneeco:v:32:y:2010:i:5:p:993-1000

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/eneco

    Related research

    Keywords: Crude oil Autocorrelations Multiscaling pattern Mean reversion;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Ghaffari, Ali & Zare, Samaneh, 2009. "A novel algorithm for prediction of crude oil price variation based on soft computing," Energy Economics, Elsevier, vol. 31(4), pages 531-536, July.
    2. Charles, Amélie & Darné, Olivier, 2009. "The efficiency of the crude oil markets: Evidence from variance ratio tests," Energy Policy, Elsevier, vol. 37(11), pages 4267-4272, November.
    3. Shambora, William E. & Rossiter, Rosemary, 2007. "Are there exploitable inefficiencies in the futures market for oil?," Energy Economics, Elsevier, vol. 29(1), pages 18-27, January.
    4. Lee, Yen-Hsien & Hu, Hsu-Ning & Chiou, Jer-Shiou, 2010. "Jump dynamics with structural breaks for crude oil prices," Energy Economics, Elsevier, vol. 32(2), pages 343-350, March.
    5. Amos Tversky & Daniel Kahneman, 1979. "Prospect Theory: An Analysis of Decision under Risk," Levine's Working Paper Archive 7656, David K. Levine.
    6. Alvarez-Ramirez, Jose & Cisneros, Myriam & Ibarra-Valdez, Carlos & Soriano, Angel, 2002. "Multifractal Hurst analysis of crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 651-670.
    7. Tvedt, Jostein, 2002. "The effect of uncertainty and aggregate investments on crude oil price dynamics," Energy Economics, Elsevier, vol. 24(6), pages 615-628, November.
    8. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    9. Pindyck, Robert S., 1998. "The long-run evolution of energy prices," Working papers WP 4044-98., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    10. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-313, September.
    11. Robert S. Pindyck, 2001. "The Dynamics of Commodity Spot and Futures Markets: A Primer," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-30.
    12. Serletis, Apostolos & Andreadis, Ioannis, 2004. "Random fractal structures in North American energy markets," Energy Economics, Elsevier, vol. 26(3), pages 389-399, May.
    13. Tabak, Benjamin M. & Cajueiro, Daniel O., 2007. "Are the crude oil markets becoming weakly efficient over time? A test for time-varying long-range dependence in prices and volatility," Energy Economics, Elsevier, vol. 29(1), pages 28-36, January.
    14. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    15. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    16. Peel, David & Sarno, Lucio & Taylor, Mark P, 2001. "Nonlinear Mean-Reversion in Real Exchange Rates: Towards a Solution to the Purchasing Power Parity Puzzles," CEPR Discussion Papers 2658, C.E.P.R. Discussion Papers.
    17. Mohammadi, Hassan, 2009. "Electricity prices and fuel costs: Long-run relations and short-run dynamics," Energy Economics, Elsevier, vol. 31(3), pages 503-509, May.
    18. Wang, Yudong & Liu, Li, 2010. "Is WTI crude oil market becoming weakly efficient over time?: New evidence from multiscale analysis based on detrended fluctuation analysis," Energy Economics, Elsevier, vol. 32(5), pages 987-992, September.
    19. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo, 2008. "Short-term predictability of crude oil markets: A detrended fluctuation analysis approach," Energy Economics, Elsevier, vol. 30(5), pages 2645-2656, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2013. "On the short- and long-run efficiency of energy and precious metal markets," Energy Economics, Elsevier, vol. 40(C), pages 832-844.
    2. Liu, Li & Chen, Ching-Cheng & Wan, Jieqiu, 2013. "Is world oil market “one great pool”?: An example from China's and international oil markets," Economic Modelling, Elsevier, vol. 35(C), pages 364-373.
    3. Liu, Li & Wan, Jieqiu, 2011. "A study of correlations between crude oil spot and futures markets: A rolling sample test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3754-3766.
    4. Liu, Li & Wan, Jieqiu, 2012. "A study of Shanghai fuel oil futures price volatility based on high frequency data: Long-range dependence, modeling and forecasting," Economic Modelling, Elsevier, vol. 29(6), pages 2245-2253.
    5. He, Ling-Yun & Qian, Wen-Bin, 2012. "A Monte Carlo simulation to the performance of the R/S and V/S methods—Statistical revisit and real world application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(14), pages 3770-3782.
    6. Wang, Yudong & Wu, Chongfeng, 2013. "Are crude oil spot and futures prices cointegrated? Not always!," Economic Modelling, Elsevier, vol. 33(C), pages 641-650.
    7. Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Commodity futures and market efficiency," Energy Economics, Elsevier, vol. 42(C), pages 50-57.
    8. Komijani, Akbar & Naderi, Esmaeil & Gandali Alikhani, Nadiya, 2013. "A Hybrid Approach for Forecasting of Oil Prices Volatility," MPRA Paper 44654, University Library of Munich, Germany.
    9. Yudong Wang & Chongfeng Wu, 2013. "Efficiency of Crude Oil Futures Markets: New Evidence from Multifractal Detrending Moving Average Analysis," Computational Economics, Society for Computational Economics, vol. 42(4), pages 393-414, December.
    10. Martina, Esteban & Rodriguez, Eduardo & Escarela-Perez, Rafael & Alvarez-Ramirez, Jose, 2011. "Multiscale entropy analysis of crude oil price dynamics," Energy Economics, Elsevier, vol. 33(5), pages 936-947, September.
    11. Aloy Marcel & Tong Charles Lai & Peguin-Feissolle Anne & Dufrénot Gilles, 2013. "A smooth transition long-memory model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(3), pages 281-296, May.
    12. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2011. "Detrended fluctuation analysis on spot and futures markets of West Texas Intermediate crude oil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 864-875.
    13. Lubnau, Thorben, 2014. "Spread trading strategies in the crude oil futures market," Discussion Papers 353, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.
    14. Zhi-Qiang Jiang & Wen-Jie Xie & Wei-Xing Zhou, 2012. "Testing the weak-form efficiency of the WTI crude oil futures market," Papers 1211.4686, arXiv.org.
    15. Zhang, Bing, 2013. "Are the crude oil markets becoming more efficient over time? New evidence from a generalized spectral test," Energy Economics, Elsevier, vol. 40(C), pages 875-881.
    16. Yuan, Ying & Zhuang, Xin-tian & Liu, Zhi-ying & Huang, Wei-qiang, 2014. "Analysis of the temporal properties of price shock sequences in crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 235-246.
    17. Chen, Shyh-Wei & Lin, Shih-Mo, 2014. "Non-linear dynamics in international resource markets: Evidence from regime switching approach," Research in International Business and Finance, Elsevier, vol. 30(C), pages 233-247.
    18. Zhou, Weijie & Dang, Yaoguo & Gu, Rongbao, 2013. "Efficiency and multifractality analysis of CSI 300 based on multifractal detrending moving average algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1429-1438.
    19. Wang, Yudong & Wu, Chongfeng, 2012. "What can we learn from the history of gasoline crack spreads?: Long memory, structural breaks and modeling implications," Economic Modelling, Elsevier, vol. 29(2), pages 349-360.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:32:y:2010:i:5:p:993-1000. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.