IDEAS home Printed from https://ideas.repec.org/a/taf/cijwxx/v32y2016i3p459-476.html
   My bibliography  Save this article

Drivers of groundwater use and technical efficiency of groundwater, canal water, and conjunctive use in Pakistan’s Indus Basin Irrigation System

Author

Listed:
  • Dawit Mekonnen
  • Afreen Siddiqi
  • Claudia Ringler

Abstract

This paper explores the major determinants of heavy reliance on groundwater and the extent to which conjunctive use of ground and surface water affects the production efficiency of Pakistan’s irrigators. The results show that the major drivers of groundwater use in Pakistan’s agriculture are the variability and uncertainty associated with surface water delivery and that any effort to address the groundwater--energy nexus challenge should first consider fixing the problems associated with surface water supplies. The findings also suggest that having access to groundwater does not directly translate into improvements in technical efficiency of production.

Suggested Citation

  • Dawit Mekonnen & Afreen Siddiqi & Claudia Ringler, 2016. "Drivers of groundwater use and technical efficiency of groundwater, canal water, and conjunctive use in Pakistan’s Indus Basin Irrigation System," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 32(3), pages 459-476, May.
  • Handle: RePEc:taf:cijwxx:v:32:y:2016:i:3:p:459-476
    DOI: 10.1080/07900627.2015.1133402
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07900627.2015.1133402
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07900627.2015.1133402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qureshi, A. S. & Shah, T. & Akhtar, M, 2003. "The groundwater economy of Pakistan," IWMI Working Papers H033572, International Water Management Institute.
    2. Meinzen-Dick, Ruth Suseela, 1996. "Groundwater markets in Pakistan: participation and productivity," Research reports 105, International Food Policy Research Institute (IFPRI).
    3. Kumar, M. Dinesh & Amarasinghe, Upali A., 2009. "Strategic Analyses of the National River Linking Project (NRLP) of India, Series 4. Water productivity improvements in Indian agriculture: potentials, constraints and prospects," IWMI Books, Reports H042633, International Water Management Institute.
    4. Kumar, M. Dinesh & Amarasinghe, Upali A., 2009. "Water productivity improvements in Indian agriculture: potentials, constraints and prospects," IWMI Books, Reports H042634, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sobia Asghar & Nophea Sasaki & Damien Jourdain & Takuji W. Tsusaka, 2018. "Levels of Technical, Allocative, and Groundwater Use Efficiency and the Factors Affecting the Allocative Efficiency of Wheat Farmers in Pakistan," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    2. Aarnoudse, E. & Closas, Alvar & Lefore, Nicole, 2018. "Water user associations: a review of approaches and alternative management options for Sub-Saharan Africa," IWMI Working Papers H048782, International Water Management Institute.
    3. Shanshan Guo & Fan Zhang & Chenglong Zhang & Chunjiang An & Sufen Wang & Ping Guo, 2018. "A Multi-Objective Hierarchical Model for Irrigation Scheduling in the Complex Canal System," Sustainability, MDPI, vol. 11(1), pages 1-15, December.
    4. Yu, Haochen & Chen, Fu & Ma, Jing & Khan, Zafar Iqbal & Hussain, M. Iftikhar & Javaid, Iqra & Ahmad, Kafeel & Nazar, Sonaina & Akhtar, Shahzad & Ejaz, Abid & Sohail, Muhammad & Nadeem, Muhammad & Hami, 2022. "Comparative evaluation of groundwater, wastewater and canal water for irrigation on toxic metal accumulation in soil and vegetable: Pollution load and health risk assessment," Agricultural Water Management, Elsevier, vol. 264(C).
    5. Mekonnen, Dawit & Hira, Channa & Claudia, Ringler, "undated". "Where to invest in the Indus Basin Irrigation System in Pakistan to improve land and water productivity? Insights from a hierarchical model," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235977, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Dinesh M., 2013. "Raising Agricultural Productivity, Reducing Groundwater Use and Mitigating Carbon Emissions: Role of Energy Pricing in Farm Sector," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 68(3), pages 1-17.
    2. Singh, O.P., 2013. "Hydrological and Farming System Impacts of Agricultural Water Management Interventions in North Gujarat," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 68(3), pages 1-21.
    3. Watto, Muhammad, 2013. "Measuring Groundwater Irrigation Efficiency in Pakistan: A DEA Approach Using the Sub-vector and Slack-based Models," 2013 Conference (57th), February 5-8, 2013, Sydney, Australia 152204, Australian Agricultural and Resource Economics Society.
    4. Watto, Muhammad Arif & Mugera, Amin William, 2013. "Measuring Groundwater Irrigation Efficiency in Pakistan: A DEA Approach Using the Sub-vector and Slack-based Models," Working Papers 144943, University of Western Australia, School of Agricultural and Resource Economics.
    5. M. Dinesh Kumar & Jos C. van Dam, 2013. "Drivers of change in agricultural water productivity and its improvement at basin scale in developing economies," Water International, Taylor & Francis Journals, vol. 38(3), pages 312-325, May.
    6. Sobia Asghar & Nophea Sasaki & Damien Jourdain & Takuji W. Tsusaka, 2018. "Levels of Technical, Allocative, and Groundwater Use Efficiency and the Factors Affecting the Allocative Efficiency of Wheat Farmers in Pakistan," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    7. M. Dinesh Kumar, 2018. "Physical Transfer of Water Versus Virtual Water Trade: Economic and Policy Considerations," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 1-21, July.
    8. Reto Foellmi & Urs Meister, 2012. "Enhancing the Efficiency of Water Supply—Product Market Competition Versus Trade," Journal of Industry, Competition and Trade, Springer, vol. 12(3), pages 299-324, September.
    9. Francesco Prota, 2002. "Water Resources And Water Policies," Working Papers 8_2002, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
    10. Zhang, Lijuan & Wang, Jinxia & Huang, Jikun & Rozelle, Scott, 2008. "Development of Groundwater Markets in China: A Glimpse into Progress to Date," World Development, Elsevier, vol. 36(4), pages 706-726, April.
    11. Afreen Siddiqi & James L. Wescoat, 2013. "Energy use in large-scale irrigated agriculture in the Punjab province of Pakistan," Water International, Taylor & Francis Journals, vol. 38(5), pages 571-586, September.
    12. Khair, Syed M. & Mushtaq, Shahbaz & Culas, Richard J. & Hafeez, Mohsin, 2012. "Groundwater markets under the water scarcity and declining watertable conditions: The upland Balochistan Region of Pakistan," Agricultural Systems, Elsevier, vol. 107(C), pages 21-32.
    13. Asad Qureshi & Peter McCornick & A. Sarwar & Bharat Sharma, 2010. "Challenges and Prospects of Sustainable Groundwater Management in the Indus Basin, Pakistan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1551-1569, June.
    14. A.Banerji & Gauri Khanna & J.V. Meenakshi, 2006. "Markets, Institutions And Efficiency Groundwater Irrigation In North India," Working papers 152, Centre for Development Economics, Delhi School of Economics.
    15. Alauddin, Mohammad & Quiggin, John, 2008. "Agricultural intensification, irrigation and the environment in South Asia: Issues and policy options," Ecological Economics, Elsevier, vol. 65(1), pages 111-124, March.
    16. Junaid Alam Memon & Mehwish Qudoos Alizai & Anwar Hussain, 2020. "Who will think outside the sink? Farmers’ willingness to invest in technologies for groundwater sustainability in Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4425-4445, June.
    17. Banerji, A. & Meenakshi, J.V. & Khanna, Gauri, 2012. "Social contracts, markets and efficiency: Groundwater irrigation in North India," Journal of Development Economics, Elsevier, vol. 98(2), pages 228-237.
    18. Sharma, Purushottam & Sharma, R.C., 2006. "Factors Determining Farmers’ Decision for Buying Irrigation Water: Study of Groundwater Markets in Rajasthan," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 19(1), January.
    19. Hanemann, Michael, 2014. "Property rights and sustainable irrigation—A developed world perspective," Agricultural Water Management, Elsevier, vol. 145(C), pages 5-22.
    20. Wang, Jinxia & Huang, Jikun & Rozelle, Scott, 2005. "Evolution of tubewell ownership and production in the North China Plain," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 49(2), pages 1-19.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:cijwxx:v:32:y:2016:i:3:p:459-476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/cijw20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.