IDEAS home Printed from https://ideas.repec.org/a/taf/rwinxx/v38y2013i3p312-325.html
   My bibliography  Save this article

Drivers of change in agricultural water productivity and its improvement at basin scale in developing economies

Author

Listed:
  • M. Dinesh Kumar
  • Jos C. van Dam

Abstract

We approach the issue of water productivity in agriculture by identifying five sets of drivers of change. We find that irrigation efficiencies at the field level can result in real water savings under certain conditions, but that small farmers in most of South Asia and Africa have little incentive to adopt the appropriate measures. Although water productivity improvement and water savings at the regional level are possible through a shift to economically efficient crops, such changes may be constrained by concerns with respect to domestic and regional food security, rural employment, and farming system resilience.

Suggested Citation

  • M. Dinesh Kumar & Jos C. van Dam, 2013. "Drivers of change in agricultural water productivity and its improvement at basin scale in developing economies," Water International, Taylor & Francis Journals, vol. 38(3), pages 312-325, May.
  • Handle: RePEc:taf:rwinxx:v:38:y:2013:i:3:p:312-325
    DOI: 10.1080/02508060.2013.793572
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02508060.2013.793572
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02508060.2013.793572?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seckler, D., 1996. "The new era of water resources management: from \dry\ to \wet\ water savings," IWMI Research Reports H018206, International Water Management Institute.
    2. Molle, Francois & Mamanpoush, Alireza & Miranzadeh, Mokhtar, 2004. "Robbing Yadullah’s water to irrigate Saeid’s garden: hydrology and water rights in a village of Central Iran," IWMI Research Reports 53063, International Water Management Institute.
    3. Molle, François & Mamanpoush, A. & Miranzadeh, M., 2004. "Robbing Yadullah’s water to irrigate Saeid’s garden: hydrology and water rights in a village of Central Iran," IWMI Research Reports H035318, International Water Management Institute.
    4. Kumar, M. Dinesh & Amarasinghe, Upali A., 2009. "Strategic Analyses of the National River Linking Project (NRLP) of India, Series 4. Water productivity improvements in Indian agriculture: potentials, constraints and prospects," IWMI Books, Reports H042633, International Water Management Institute.
    5. Kumar, M. Dinesh & Amarasinghe, Upali A., 2009. "Water productivity improvements in Indian agriculture: potentials, constraints and prospects," IWMI Books, Reports H042634, International Water Management Institute.
    6. Andrew Sharpe & Blair Long, 2012. "Innovation in Canadian Natural Resource Industries: A Systems-Based Analysis of Performance, Policy and Emerging Challenges," CSLS Research Reports 2012-06, Centre for the Study of Living Standards.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amarasinghe, Upali A. & Sikka, Alok & Mandave, Vidya & Panda, R. K. & Gorantiwar, S. & Ambast, S. K., 2021. "Improving economic water productivity to enhance resilience in canal irrigation systems: a pilot study of the Sina Irrigation System in Maharashtra, India," Papers published in Journals (Open Access), International Water Management Institute, pages 23(2):447-4.
    2. Feng Huang & Baoguo Li, 2020. "What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    3. M. Dinesh Kumar, 2016. "Distressed Elephants: Policy Initiatives for Sustainable Groundwater Management in India," IIM Kozhikode Society & Management Review, , vol. 5(1), pages 51-62, January.
    4. Chandra Sekhar Bahinipati & Viswanathan P K, 2016. "Role of Institutions and Policies in Diffusion of Micro-irrigation in Gujarat, Western India," Working Papers id:11359, eSocialSciences.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    2. Kumar, M. Dinesh & Patel, Ankit & Singh, O. P., 2008. "Rainwater harvesting in the water-scarce regions of India: potential and pitfalls," Conference Papers h041809, International Water Management Institute.
    3. Kumar, M. Dinesh & van Dam, J. C., 2009. "Improving water productivity in agriculture in India: beyond \u2018more crop per drop\u2019," IWMI Books, Reports H042639, International Water Management Institute.
    4. Kumar, Dinesh M., 2013. "Raising Agricultural Productivity, Reducing Groundwater Use and Mitigating Carbon Emissions: Role of Energy Pricing in Farm Sector," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 68(3), pages 1-17.
    5. Francois Molle & Jeremy Berkoff, 2009. "Cities vs. agriculture: A review of intersectoral water re‐allocation," Natural Resources Forum, Blackwell Publishing, vol. 33(1), pages 6-18, February.
    6. Chávez-Jiménez Adriadna & González-Zeas Dunia & Buguña Nilton & Martínez Angela, 2018. "The Role of Regulation in Meeting Water Demands under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 4031-4044, September.
    7. Singh, O.P., 2013. "Hydrological and Farming System Impacts of Agricultural Water Management Interventions in North Gujarat," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 68(3), pages 1-21.
    8. Kumar, M. Dinesh, 2009. "Opportunities and constraints to improving water productivity in India," Book Chapters,, International Water Management Institute.
    9. Dawit Mekonnen & Afreen Siddiqi & Claudia Ringler, 2016. "Drivers of groundwater use and technical efficiency of groundwater, canal water, and conjunctive use in Pakistan’s Indus Basin Irrigation System," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 32(3), pages 459-476, May.
    10. Kumar, M. Dinesh, 2009. "Opportunities and constraints to improving water productivity in India," IWMI Books, Reports H042640, International Water Management Institute.
    11. Lin Crase & Suzanne O’Keefe, 2009. "The paradox of national water savings: A critique of “Water for the Future”," Agenda - A Journal of Policy Analysis and Reform, Australian National University, College of Business and Economics, School of Economics, vol. 16(1), pages 45-62.
    12. M. Dinesh Kumar, 2018. "Physical Transfer of Water Versus Virtual Water Trade: Economic and Policy Considerations," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 1-21, July.
    13. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    14. Jinxia Wang & K. K. Klein & Henning Bjornlund & Lijuan Zhang & Wencui Zhang, 2015. "Changing to more efficient irrigation technologies in southern Alberta (Canada): an empirical analysis," Water International, Taylor & Francis Journals, vol. 40(7), pages 1040-1058, November.
    15. Brar, S.K. & Mahal, S.S. & Brar, A.S. & Vashist, K.K. & Sharma, Neerja & Buttar, G.S., 2012. "Transplanting time and seedling age affect water productivity, rice yield and quality in north-west India," Agricultural Water Management, Elsevier, vol. 115(C), pages 217-222.
    16. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    17. Forough Jafary & Chris Bradley, 2018. "Groundwater Irrigation Management and the Existing Challenges from the Farmers’ Perspective in Central Iran," Land, MDPI, vol. 7(1), pages 1-21, January.
    18. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    19. Ricardo de Avillez, 2014. "A Detailed Analysis of Productivity Trends in the Canadian Forest Products Sector," CSLS Research Reports 2014-01, Centre for the Study of Living Standards.
    20. Burton, M. A. & Kivumbi, D. & El-Askari, K., 1999. "Opportunities and constraints to improving irrigation water management: Foci for research," Agricultural Water Management, Elsevier, vol. 40(1), pages 37-44, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:rwinxx:v:38:y:2013:i:3:p:312-325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/rwin20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.