IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v284y2020i1d10.1007_s10479-018-3063-0.html
   My bibliography  Save this article

Exploring the financial risk of a temperature index: a fractional integrated approach

Author

Listed:
  • Rosella Castellano

    (University of Roma Unitelma-Sapienza)

  • Roy Cerqueti

    (University of Macerata)

  • Giulia Rotundo

    (Sapienza University of Rome)

Abstract

This paper introduces a new temperature index, which can suitably represent the underlying of a weather derivative. Such an index is defined as the weighted mean of daily average temperatures measured in different locations. It may be used to hedge volumetric risk, that is the effect of unexpected fluctuations in the demand/supply for some specific commodities—of agricultural or energy type, for example—due to unfavorable temperature conditions. We aim at exploring the long term memory property of the volatility of such an index, in order to assess whether there exist some long-run paths and regularities in its riskiness. The theoretical part of the paper proceeds in a stepwise form: first, the daily average temperatures are modeled through autoregressive dynamics with seasonality in mean and volatility; second, the assessment of the distributional hypotheses on the parameters of the model is carried out for analyzing the long term memory property of the volatility of the index. The theoretical results suggest that the single terms of the index drive the long memory of the overall aggregation; moreover, interestingly, the proper selection of the parameters of the model might lead both to cases of persistence and antipersistence. The applied part of the paper provides some insights on the behaviour of the volatility of the proposed index, which is built starting from single daily average temperature time series.

Suggested Citation

  • Rosella Castellano & Roy Cerqueti & Giulia Rotundo, 2020. "Exploring the financial risk of a temperature index: a fractional integrated approach," Annals of Operations Research, Springer, vol. 284(1), pages 225-242, January.
  • Handle: RePEc:spr:annopr:v:284:y:2020:i:1:d:10.1007_s10479-018-3063-0
    DOI: 10.1007/s10479-018-3063-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-3063-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-3063-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Bianchi & A. Pantanella & A. Pianese, 2013. "Modeling stock prices by multifractional Brownian motion: an improved estimation of the pointwise regularity," Quantitative Finance, Taylor & Francis Journals, vol. 13(8), pages 1317-1330, July.
    2. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2004. "Fluctuations and response in financial markets: the subtle nature of 'random' price changes," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 176-190.
    3. Charles C Yang & Linda Shihong Li & Min-Ming Wen, 2011. "Weather Risk Hedging in the European Markets and International Investment Diversification," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 36(1), pages 74-94, June.
    4. C. H. Hommes, 2001. "Financial markets as nonlinear adaptive evolutionary systems," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 149-167.
    5. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    6. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    7. Linda L. Golden & Mulong Wang & Chuanhou Yang, 2007. "Handling Weather Related Risks Through the Financial Markets: Considerations of Credit Risk, Basis Risk, and Hedging," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(2), pages 319-346, June.
    8. Yuxin Zhao & Shuai Chang & Chang Liu, 2015. "Multifractal theory with its applications in data management," Annals of Operations Research, Springer, vol. 234(1), pages 133-150, November.
    9. F. Lillo & Szabolcs Mike & J. Doyne Farmer, 2004. "A theory for long-memory in supply and demand," Papers cond-mat/0412708, arXiv.org, revised Mar 2005.
    10. Dorfleitner, Gregor & Wimmer, Maximilian, 2010. "The pricing of temperature futures at the Chicago Mercantile Exchange," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1360-1370, June.
    11. Gülpınar, Nalân & Çanakoḡlu, Ethem, 2017. "Robust portfolio selection problem under temperature uncertainty," European Journal of Operational Research, Elsevier, vol. 256(2), pages 500-523.
    12. Wolfgang Karl Hardle and Maria Osipenko, 2012. "Spatial Risk Premium on Weather Derivatives and Hedging Weather Exposure in Electricity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    13. Derek Bunn & Fernando Oliveira, 2003. "Evaluating Individual Market Power in Electricity Markets via Agent-Based Simulation," Annals of Operations Research, Springer, vol. 121(1), pages 57-77, July.
    14. Fred Espen Benth, 2003. "On arbitrage-free pricing of weather derivatives based on fractional Brownian motion," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(4), pages 303-324.
    15. Frank Schiller & Gerold Seidler & Maximilian Wimmer, 2012. "Temperature models for pricing weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 489-500, March.
    16. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    17. Roy Cerqueti & Giulia Rotundo, 2015. "A review of aggregation techniques for agent-based models: understanding the presence of long-term memory," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(4), pages 1693-1717, July.
    18. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    19. Natalia Markovich & Jorma Kilpi, 2009. "Bivariate statistical analysis of TCP-flow sizes and durations," Annals of Operations Research, Springer, vol. 170(1), pages 199-216, September.
    20. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Miranda, José G.V. & García-Rubio, Raquel, 2013. "How fast do stock prices adjust to market efficiency? Evidence from a detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1631-1637.
    21. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    22. Ivanova, K & Ausloos, M, 1999. "Low-order variability diagrams for short-range correlation evidence in financial data: BGL-USD exchange rate, Dow Jones industrial average, gold ounce price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 265(1), pages 279-291.
    23. Melanie Cao & Jason Wei, 2004. "Weather derivatives valuation and market price of weather risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(11), pages 1065-1089, November.
    24. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    25. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    26. Ausloos, M & Ivanova, K, 2000. "Introducing False EUR and False EUR exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 286(1), pages 353-366.
    27. Roberto Buizza & James W. Taylor, 2004. "A comparison of temperature density forecasts from GARCH and atmospheric models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(5), pages 337-355.
    28. Weron, Rafał, 2002. "Estimating long-range dependence: finite sample properties and confidence intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 285-299.
    29. Andreas Müller & Marcel Grandi, 2000. "Weather Derivatives: A Risk Management Tool for Weather-sensitive Industries," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 25(2), pages 273-287, April.
    30. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    31. Dorje Brody & Joanna Syroka & Mihail Zervos, 2002. "Dynamical pricing of weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 2(3), pages 189-198.
    32. Jurate saltyte Benth & Fred Espen Benth & Paulius Jalinskas, 2007. "A Spatial-temporal Model for Temperature with Seasonal Variance," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(7), pages 823-841.
    33. M. Davis, 2001. "Pricing weather derivatives by marginal value," Quantitative Finance, Taylor & Francis Journals, vol. 1(3), pages 305-308, March.
    34. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    35. Ivana Štulec, 2017. "Effectiveness of Weather Derivatives as a Risk Management Tool in Food Retail: The Case of Croatia," IJFS, MDPI, vol. 5(1), pages 1-15, January.
    36. Taylor, James W. & Buizza, Roberto, 2006. "Density forecasting for weather derivative pricing," International Journal of Forecasting, Elsevier, vol. 22(1), pages 29-42.
    37. Helyette Geman & M. Leonardi, 2005. "Alternative Approaches to Weather Derivatives Pricing," Post-Print halshs-00144304, HAL.
    38. repec:dau:papers:123456789/1386 is not listed on IDEAS
    39. Cheung, Yin-Wong & Lai, Kon S, 1993. "A Fractional Cointegration Analysis of Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 103-112, January.
    40. Zaffaroni, Paolo, 2007. "Aggregation and memory of models of changing volatility," Journal of Econometrics, Elsevier, vol. 136(1), pages 237-249, January.
    41. Follmer, Hans & Horst, Ulrich & Kirman, Alan, 2005. "Equilibria in financial markets with heterogeneous agents: a probabilistic perspective," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 123-155, February.
    42. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Qian & Yuemeng Ge, 2021. "The implementation of leisure tourism enterprise management system based on deep learning," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(4), pages 801-812, August.
    2. Yan, Yumeng & Xiong, Xiong & Li, Shuo & Lu, Lei, 2022. "Will temperature change reduce stock returns? Evidence from China," International Review of Financial Analysis, Elsevier, vol. 81(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy Cerqueti & Giulia Rotundo, 2015. "A review of aggregation techniques for agent-based models: understanding the presence of long-term memory," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(4), pages 1693-1717, July.
    2. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
    3. Cui, Hairong & Zhou, Ying & Dzandu, Michael D. & Tang, Yinshan & Lu, Xunfa, 2019. "Is temperature-index derivative suitable for China?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    4. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    5. Jr‐Wei Huang & Sharon S. Yang & Chuang‐Chang Chang, 2018. "Modeling temperature behaviors: Application to weather derivative valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1152-1175, September.
    6. Eirini Konstantinidi & Gkaren Papazian & George Skiadopoulos, 2015. "Modeling the Dynamics of Temperature with a View to Weather Derivatives," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 17, pages 511-544, World Scientific Publishing Co. Pte. Ltd..
    7. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, December.
    8. Youwei Li & Xue-Zhong He, 2005. "Long Memory, Heterogeneity, and Trend Chasing," Computing in Economics and Finance 2005 113, Society for Computational Economics.
    9. Gaunersdorfer, A. & Hommes, C.H. & Wagener, F.O.O., 2000. "Bifurcation Routes to Volatility Clustering," CeNDEF Working Papers 00-04, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    10. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    11. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    12. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    13. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    14. He, Xue-Zhong & Li, Youwei, 2007. "Power-law behaviour, heterogeneity, and trend chasing," Journal of Economic Dynamics and Control, Elsevier, vol. 31(10), pages 3396-3426, October.
    15. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2014.
    16. Gaunersdorfer, Andrea & Hommes, Cars H. & Wagener, Florian O.O., 2008. "Bifurcation routes to volatility clustering under evolutionary learning," Journal of Economic Behavior & Organization, Elsevier, vol. 67(1), pages 27-47, July.
    17. Parke, William R. & Waters, George A., 2007. "An evolutionary game theory explanation of ARCH effects," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2234-2262, July.
    18. Youwei Li & Bas Donkers & Bertrand Melenberg, 2010. "Econometric analysis of microscopic simulation models," Quantitative Finance, Taylor & Francis Journals, vol. 10(10), pages 1187-1201.
    19. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 13, July-Dece.
    20. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:284:y:2020:i:1:d:10.1007_s10479-018-3063-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.