IDEAS home Printed from https://ideas.repec.org/p/wop/pennin/02-42.html
   My bibliography  Save this paper

Weather Forecasting for Weather Derivatives

Author

Listed:
  • Sean D. Campbell
  • Francis X. Diebold

Abstract

We take a simple time-series approach to modeling and forecasting daily average temperature in U.S. cities, and we inquire systematically as to whether it may prove useful from the vantage point of participants in the weather derivatives market. The answer is, perhaps surprisingly, yes. Time-series modeling reveals both strong conditional mean dynamics and conditional variance dynamics in daily average temperature, and it reveals sharp differences between the distribution of temperature and the distribution of temperature surprises. The approach can easily be used to produce not only short-horizon point forecasts, but also the long-horizon density forecasts of maximal relevance in weather derivatives contexts. We produce and evaluate both, with some success. We conclude that additional inquiry into nonstructural weather forecasting methods will likely prove useful in weather derivatives contexts.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Sean D. Campbell & Francis X. Diebold, 2002. "Weather Forecasting for Weather Derivatives," Center for Financial Institutions Working Papers 02-42, Wharton School Center for Financial Institutions, University of Pennsylvania.
  • Handle: RePEc:wop:pennin:02-42
    as

    Download full text from publisher

    File URL: http://fic.wharton.upenn.edu/fic/papers/02/0242.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/3433 is not listed on IDEAS
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Tim Bollerslev & Jeffrey M. Wooldridge, 1988. "Quasi-Maximum Likelihood Estimation of Dynamic Models with Time-Varying Covariances," Working papers 505, Massachusetts Institute of Technology (MIT), Department of Economics.
    4. Francis X. Diebold & Todd A. Gunther & Anthony S. Tay, "undated". "Evaluating Density Forecasts," CARESS Working Papres 97-18, University of Pennsylvania Center for Analytic Research and Economics in the Social Sciences.
    5. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," Center for Financial Institutions Working Papers 02-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
    6. Seater, John J, 1993. "World Temperature-Trend Uncertainties and Their Implications for Economic Policy," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 265-277, July.
    7. Hyndman, R.J. & Grunwald, G.K., 1999. "Generalized Additive Modelling of Mixed Distribution Markov Models with Application to Melbourne's Rainfall," Monash Econometrics and Business Statistics Working Papers 2/99, Monash University, Department of Econometrics and Business Statistics.
    8. repec:cup:etheor:v:13:y:1997:i:6:p:808-17 is not listed on IDEAS
    9. Francis X. Diebold & Anthony S. Tay & Kenneth F. Wallis, 1997. "Evaluating Density Forecasts of Inflation: The Survey of Professional Forecasters," NBER Working Papers 6228, National Bureau of Economic Research, Inc.
    10. Hipòlit Torró & Vicente Meneu & Enric Valor, 2003. "Single Factor Stochastic Models with Seasonality Applied to Underlying Weather Derivatives Variables," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 4(4), pages 6-17, March.
    11. Christoffersen, Peter F. & Diebold, Francis X., 1997. "Optimal Prediction Under Asymmetric Loss," Econometric Theory, Cambridge University Press, vol. 13(6), pages 808-817, December.
    12. D'Andrade, Kendall, 1992. "The End of an Era," Business Ethics Quarterly, Cambridge University Press, vol. 2(3), pages 379-389, July.
    13. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    14. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    15. Pesaran, M Hashem & Pierse, Richard G & Kumar, Mohan S, 1989. "Econometric Analysis of Aggregation in the Context of Linear Prediction Models," Econometrica, Econometric Society, vol. 57(4), pages 861-888, July.
    16. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(4), pages 465-487, December.
    17. Roll, Richard, 1984. "Orange Juice and Weather," American Economic Review, American Economic Association, vol. 74(5), pages 861-880, December.
    18. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    19. Christoffersen, Peter F & Diebold, Francis X, 1996. "Further Results on Forecasting and Model Selection under Asymmetric Loss," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 561-571, Sept.-Oct.
    20. M. Davis, 2001. "Pricing weather derivatives by marginal value," Quantitative Finance, Taylor & Francis Journals, vol. 1(3), pages 305-308, March.
    21. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriela De Raaij & Burkhard Raunig, 2005. "Evaluating density forecasts from models of stock market returns," The European Journal of Finance, Taylor & Francis Journals, vol. 11(2), pages 151-166.
    2. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    4. Clements, Michael P., 2006. "Internal consistency of survey respondentsíforecasts: Evidence based on the Survey of Professional Forecasters," Economic Research Papers 269742, University of Warwick - Department of Economics.
    5. Chen, Bin & Hong, Yongmiao, 2014. "A unified approach to validating univariate and multivariate conditional distribution models in time series," Journal of Econometrics, Elsevier, vol. 178(P1), pages 22-44.
    6. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
    7. Raunig, Burkhard & de Raaij, Gabriela, 2002. "Evaluating Density Forecasts with an Application to Stock Market Returns," Discussion Paper Series 1: Economic Studies 2002,08, Deutsche Bundesbank.
    8. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    9. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," Tinbergen Institute Discussion Papers 08-050/4, Tinbergen Institute.
    10. Choi, Pilsun & Nam, Kiseok, 2008. "Asymmetric and leptokurtic distribution for heteroscedastic asset returns: The SU-normal distribution," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 41-63, January.
    11. Peter Christoffersen & Francis X. Diebold, 2002. "Financial Asset Returns, Market Timing, and Volatility Dynamics," CIRANO Working Papers 2002s-02, CIRANO.
    12. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    13. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1998. "Real-Time Multivariate Density Forecast Evaluation and Calibration: Monitoring the Risk of High-Frequency Returns on Foreign Exchange," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-079, New York University, Leonard N. Stern School of Business-.
    14. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(2), pages 211-250.
    15. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    16. Corradi, Valentina & Swanson, Norman R., 2006. "Bootstrap conditional distribution tests in the presence of dynamic misspecification," Journal of Econometrics, Elsevier, vol. 133(2), pages 779-806, August.
    17. Hueng, C. James & McDonald, James B., 2005. "Forecasting asymmetries in aggregate stock market returns: Evidence from conditional skewness," Journal of Empirical Finance, Elsevier, vol. 12(5), pages 666-685, December.
    18. Vijverberg, Chu-Ping C. & Vijverberg, Wim P.M. & Taşpınar, Süleyman, 2016. "Linking Tukey’s legacy to financial risk measurement," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 595-615.
    19. Ane, Thierry & Labidi, Chiraz, 2006. "Spillover effects and conditional dependence," International Review of Economics & Finance, Elsevier, vol. 15(4), pages 417-442.
    20. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.

    More about this item

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:pennin:02-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/fiupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.