IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v46y2019i3d10.1007_s11116-017-9809-8.html
   My bibliography  Save this article

Activity-based trip chaining behavior analysis in the network under the parking fee scheme

Author

Listed:
  • Ge Gao

    (Beijing Jiaotong University)

  • Huijun Sun

    (Beijing Jiaotong University)

  • Jianjun Wu

    (Beijing Jiaotong University)

Abstract

In this paper, we incorporate activity-based trip chaining behavior into the network equilibrium analysis. An integrated model which combines Beckman-type congestion link terms and entropy-type logit demand terms is proposed to describe the traveler behavior. The convexity and equivalency conditions of the model are discussed. Based on the integrated model, a bi-level model is designed to maximize the social welfare by appropriate parking fee. Also, an expanded network is developed to eliminate the non-additivity of the utilities of activities and travelling in the original network. Then, the Simulated Annealing (SA) method is used to solve the proposed bi-level model. Numerical examples are presented to examine the model’s availability and effects of the parking fee scheme on traveler behavior and social welfare. Results show that the model is effective in describing the trip chaining behavior in the network.

Suggested Citation

  • Ge Gao & Huijun Sun & Jianjun Wu, 2019. "Activity-based trip chaining behavior analysis in the network under the parking fee scheme," Transportation, Springer, vol. 46(3), pages 647-669, June.
  • Handle: RePEc:kap:transp:v:46:y:2019:i:3:d:10.1007_s11116-017-9809-8
    DOI: 10.1007/s11116-017-9809-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-017-9809-8
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-017-9809-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhat, Chandra, 1999. "An analysis of evening commute stop-making behavior using repeated choice observations from a multi-day survey," Transportation Research Part B: Methodological, Elsevier, vol. 33(7), pages 495-510, September.
    2. Currie, Graham & Delbosc, Alexa, 2011. "Exploring the trip chaining behaviour of public transport users in Melbourne," Transport Policy, Elsevier, vol. 18(1), pages 204-210, January.
    3. Small, Kenneth A & Rosen, Harvey S, 1981. "Applied Welfare Economics with Discrete Choice Models," Econometrica, Econometric Society, vol. 49(1), pages 105-130, January.
    4. Maruyama, Takuya & Sumalee, Agachai, 2007. "Efficiency and equity comparison of cordon- and area-based road pricing schemes using a trip-chain equilibrium model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(7), pages 655-671, August.
    5. Golob, Thomas F., 2000. "A simultaneous model of household activity participation and trip chain generation," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 355-376, June.
    6. Scott, Darren M. & Kanaroglou, Pavlos S., 2002. "An activity-episode generation model that captures interactions between household heads: development and empirical analysis," Transportation Research Part B: Methodological, Elsevier, vol. 36(10), pages 875-896, December.
    7. Rajesh Paleti & Peter Vovsha & Gaurav Vyas & Rebekah Anderson & Gregory Giaimo, 2017. "Activity sequencing, location, and formation of individual non-mandatory tours: application to the activity-based models for Columbus, Cincinnati, and Cleveland, OH," Transportation, Springer, vol. 44(3), pages 615-640, May.
    8. Joachim Scheiner & Christian Holz-Rau, 2017. "Women’s complex daily lives: a gendered look at trip chaining and activity pattern entropy in Germany," Transportation, Springer, vol. 44(1), pages 117-138, January.
    9. Lu, Xuedong & Pas, Eric I., 1999. "Socio-demographics, activity participation and travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(1), pages 1-18, January.
    10. Arnott, Richard & Inci, Eren, 2006. "An integrated model of downtown parking and traffic congestion," Journal of Urban Economics, Elsevier, vol. 60(3), pages 418-442, November.
    11. Bonsall, Peter & Young, William, 2010. "Is there a case for replacing parking charges by road user charges?," Transport Policy, Elsevier, vol. 17(5), pages 323-334, September.
    12. Terry L. Friesz & David Bernstein & Tony E. Smith & Roger L. Tobin & B. W. Wie, 1993. "A Variational Inequality Formulation of the Dynamic Network User Equilibrium Problem," Operations Research, INFORMS, vol. 41(1), pages 179-191, February.
    13. Toshiyuki Yamamoto & Ryuichi Kitamura, 1999. "An analysis of time allocation to in-home and out-of-home discretionary activities across working days and non- working days," Transportation, Springer, vol. 26(2), pages 231-250, May.
    14. Bentley, Gillian A. & Bruce, Alex & Jones, David R., 1977. "Intra-urban journeys and activity linkages," Socio-Economic Planning Sciences, Elsevier, vol. 11(4), pages 213-220.
    15. Arun Kuppam & Ram Pendyala, 2001. "A structural equations analysis of commuters' activity and travel patterns," Transportation, Springer, vol. 28(1), pages 33-54, February.
    16. Julian Hine & Md. Kamruzzaman & Neale Blair, 2012. "Weekly activity-travel behaviour in rural Northern Ireland: differences by context and socio-demographic," Transportation, Springer, vol. 39(1), pages 175-195, January.
    17. Carlos F. Daganzo & Yosef Sheffi, 1977. "On Stochastic Models of Traffic Assignment," Transportation Science, INFORMS, vol. 11(3), pages 253-274, August.
    18. Glazer, Amihai & Niskanen, Esko, 1992. "Parking fees and congestion," Regional Science and Urban Economics, Elsevier, vol. 22(1), pages 123-132, March.
    19. Jan-Dirk Schmöcker & Fengming Su & Robert Noland, 2010. "An analysis of trip chaining among older London residents," Transportation, Springer, vol. 37(1), pages 105-123, January.
    20. Button, Kenneth, 2006. "The political economy of parking charges in "first" and "second-best" worlds," Transport Policy, Elsevier, vol. 13(6), pages 470-478, November.
    21. Lo, Hong K. & Yip, C. W. & Wan, K. H., 2003. "Modeling transfer and non-linear fare structure in multi-modal network," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 149-170, February.
    22. Chandra Bhat & Rajul Misra, 1999. "Discretionary activity time allocation of individuals between in-home and out-of-home and between weekdays and weekends," Transportation, Springer, vol. 26(2), pages 193-229, May.
    23. Meng, Qiang & Yang, Hai, 2002. "Benefit distribution and equity in road network design," Transportation Research Part B: Methodological, Elsevier, vol. 36(1), pages 19-35, January.
    24. Xiao Fu & William Lam, 2014. "A network equilibrium approach for modelling activity-travel pattern scheduling problems in multi-modal transit networks with uncertainty," Transportation, Springer, vol. 41(1), pages 37-55, January.
    25. Md. Tazul Islam & Khandker M. Nurul Habib, 2012. "Unraveling the relationship between trip chaining and mode choice: evidence from a multi-week travel diary," Transportation Planning and Technology, Taylor & Francis Journals, vol. 35(4), pages 409-426, January.
    26. Shoup, Donald C., 1999. "The trouble with minimum parking requirements," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(7-8), pages 549-574.
    27. Bell, Michael G. H., 2000. "A game theory approach to measuring the performance reliability of transport networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(6), pages 533-545, August.
    28. Ottosson, Dadi Baldur & Chen, Cynthia & Wang, Tingting & Lin, Haiyun, 2013. "The sensitivity of on-street parking demand in response to price changes: A case study in Seattle, WA," Transport Policy, Elsevier, vol. 25(C), pages 222-232.
    29. Lee, Yuhwa & Hickman, Mark & Washington, Simon, 2007. "Household type and structure, time-use pattern, and trip-chaining behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 1004-1020, December.
    30. Bhat, Chandra R. & Singh, Sujit K., 2000. "A comprehensive daily activity-travel generation model system for workers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(1), pages 1-22, January.
    31. Stephan Brunow & Manuela Gründer, 2013. "The impact of activity chaining on the duration of daily activities," Transportation, Springer, vol. 40(5), pages 981-1001, September.
    32. Marsden, Greg, 2006. "The evidence base for parking policies--a review," Transport Policy, Elsevier, vol. 13(6), pages 447-457, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Ding & Jian Yin & Peng Dai & Lu Jiao & Rong Li & Tongfei Li & Jianjun Wu, 2019. "Optimal Topology of Multilayer Urban Traffic Networks," Complexity, Hindawi, vol. 2019, pages 1-19, October.
    2. Fanyu Wang & Junyou Zhang & Shufeng Wang & Sixian Li & Wenlan Hou, 2020. "Analysis of Driving Behavior Based on Dynamic Changes of Personality States," IJERPH, MDPI, vol. 17(2), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Yuhwa & Hickman, Mark & Washington, Simon, 2007. "Household type and structure, time-use pattern, and trip-chaining behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 1004-1020, December.
    2. Inci, Eren, 2015. "A review of the economics of parking," Economics of Transportation, Elsevier, vol. 4(1), pages 50-63.
    3. Kang, Hejun & Scott, Darren M., 2010. "Exploring day-to-day variability in time use for household members," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 609-619, October.
    4. Rafiq, Rezwana & McNally, Michael G., 2022. "A structural analysis of the work tour behavior of transit commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 61-79.
    5. Huang, Yuqiao & Gao, Linjie & Ni, Anning & Liu, Xiaoning, 2021. "Analysis of travel mode choice and trip chain pattern relationships based on multi-day GPS data: A case study in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 93(C).
    6. Manoj, M. & Verma, Ashish, 2015. "Activity–travel behaviour of non-workers from Bangalore City in India," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 400-424.
    7. Rezwana Rafiq & Michael G. McNally, 2021. "A study of tour formation: pre-, during, and post-recession analysis," Transportation, Springer, vol. 48(5), pages 2187-2233, October.
    8. Wang, Rui, 2015. "The stops made by commuters: evidence from the 2009 US National Household Travel Survey," Journal of Transport Geography, Elsevier, vol. 47(C), pages 109-118.
    9. Lee, Yuhwa & Washington, Simon & Frank, Lawrence D., 2009. "Examination of relationships between urban form, household activities, and time allocation in the Atlanta Metropolitan Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 360-373, May.
    10. Gallo, Mariano & D'Acierno, Luca & Montella, Bruno, 2011. "A multilayer model to simulate cruising for parking in urban areas," Transport Policy, Elsevier, vol. 18(5), pages 735-744, September.
    11. Zidan Mao & Dick Ettema & Martin Dijst, 2018. "Analysis of travel time and mode choice shift for non-work stops in commuting: case study of Beijing, China," Transportation, Springer, vol. 45(3), pages 751-766, May.
    12. Evangelinos, Christos & Tscharaktschiew, Stefan & Marcucci, Edoardo & Gatta, Valerio, 2018. "Pricing workplace parking via cash-out: Effects on modal choice and implications for transport policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 369-380.
    13. Kelly, J. Andrew & Clinch, J. Peter, 2009. "Temporal variance of revealed preference on-street parking price elasticity," Transport Policy, Elsevier, vol. 16(4), pages 193-199, August.
    14. Punyabeet Sarangi & M. Manoj, 2022. "Analysis of activity participation and time use decisions of partners: the context of low-and high-income households," Transportation, Springer, vol. 49(3), pages 1017-1058, June.
    15. Iragaël Joly & Karl Littlejohn & Vincent Kaufmann, 2006. "La croissance des budgets-temps de transport en question : nouvelles approches," Post-Print halshs-00174992, HAL.
    16. Golob, Thomas F. & Regan, A C, 2000. "Impacts of Information Technology on Personal Travel and Commercial Vehicle Operations: Research Challenges and Opportunities," University of California Transportation Center, Working Papers qt0zh556db, University of California Transportation Center.
    17. Yu Ding & Huapu Lu & Lei Zhang, 2016. "An analysis of activity time use on vehicle usage rationed days," Transportation, Springer, vol. 43(1), pages 145-158, January.
    18. Golob, Thomas F. & Regan, Amelia C., 2001. "Impacts of Information Technology on Personal Tavel and Commercial Vehicle Operations: Research Challenges and Opportunities," University of California Transportation Center, Working Papers qt95r7j7vk, University of California Transportation Center.
    19. Yu Ding & Huapu Lu & Lei Zhang, 2016. "An analysis of activity time use on vehicle usage rationed days," Transportation, Springer, vol. 43(1), pages 145-158, January.
    20. Hejun Kang & Darren Scott, 2011. "Impact of different criteria for identifying intra-household interactions: a case study of household time allocation," Transportation, Springer, vol. 38(1), pages 81-99, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:46:y:2019:i:3:d:10.1007_s11116-017-9809-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.