IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v47y2015icp109-118.html
   My bibliography  Save this article

The stops made by commuters: evidence from the 2009 US National Household Travel Survey

Author

Listed:
  • Wang, Rui

Abstract

Trip chaining, especially during peak-hour commute trips, is an important aspect of travel behavior that impacts the private and social costs and benefits of urban passenger travel. Combining large-sample data from the 2009 National Household Travel Survey (NHTS) and the 2010 US Census, this study analyzes the relationship between the complexity of commute tours and the characteristics of not just commuters and their households, but also their neighborhoods and regions. Different from most existing studies, this analysis controls more detailed individual, household, employment, and location characteristics and important interactions. In particular, by linking the restricted-use location data of households and work places from the NHTS survey to the US Census data, this study quantifies the effects of job-end population and employment densities. Results confirm the important impact of socio-demographics (gender, household responsibilities, and flexible work schedule), which underwent significant changes in the recent past, but fail to identify strong effects of socio-economic status, the regional and local built environment, or gasoline price.

Suggested Citation

  • Wang, Rui, 2015. "The stops made by commuters: evidence from the 2009 US National Household Travel Survey," Journal of Transport Geography, Elsevier, vol. 47(C), pages 109-118.
  • Handle: RePEc:eee:jotrge:v:47:y:2015:i:c:p:109-118
    DOI: 10.1016/j.jtrangeo.2014.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692314002415
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2014.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bhat, Chandra, 1999. "An analysis of evening commute stop-making behavior using repeated choice observations from a multi-day survey," Transportation Research Part B: Methodological, Elsevier, vol. 33(7), pages 495-510, September.
    2. Golob, Thomas F. & McNally, Michael G., 1997. "A Model of Activity Participation Between Household Heads," University of California Transportation Center, Working Papers qt4dj8f1gg, University of California Transportation Center.
    3. Adler, Thomas & Ben-Akiva, Moshe, 1979. "A theoretical and empirical model of trip chaining behavior," Transportation Research Part B: Methodological, Elsevier, vol. 13(3), pages 243-257, September.
    4. Arentze, Theo A. & Timmermans, Harry J. P., 2004. "A learning-based transportation oriented simulation system," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 613-633, August.
    5. Goulias, Konstadinos G. & Kitamura, Ryuichi, 1991. "Recursive Model System for Trip Generation and Trip Chaining," University of California Transportation Center, Working Papers qt1r0726j3, University of California Transportation Center.
    6. Alan J. Horowitz, 1982. "A Comparison Of Socioeconom1c And Structural Determinants Of Trip Tour Length," Papers in Regional Science, Wiley Blackwell, vol. 50(1), pages 185-195, January.
    7. Krygsman, Stephan & Arentze, Theo & Timmermans, Harry, 2007. "Capturing tour mode and activity choice interdependencies: A co-evolutionary logit modelling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 913-933, December.
    8. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    9. Golob, Thomas F., 2000. "A simultaneous model of household activity participation and trip chain generation," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 355-376, June.
    10. Harry Timmermans & Theo Arentze, 2011. "Transport Models and Urban Planning Practice: Experiences with Albatross," Transport Reviews, Taylor & Francis Journals, vol. 31(2), pages 199-207.
    11. Robert B Noland & John V Thomas, 2007. "Multivariate Analysis of Trip-Chaining Behavior," Environment and Planning B, , vol. 34(6), pages 953-970, December.
    12. Lu, Xuedong & Pas, Eric I., 1999. "Socio-demographics, activity participation and travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(1), pages 1-18, January.
    13. Lawrence Frank & Mark Bradley & Sarah Kavage & James Chapman & T. Lawton, 2008. "Urban form, travel time, and cost relationships with tour complexity and mode choice," Transportation, Springer, vol. 35(1), pages 37-54, January.
    14. Bhat, Chandra R., 1997. "Work travel mode choice and number of non-work commute stops," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 41-54, February.
    15. Kondo, Katsunao & Kitamura, Ryuichi, 1987. "Time-space constraints and the formation of trip chains," Regional Science and Urban Economics, Elsevier, vol. 17(1), pages 49-65, February.
    16. P A Williams, 1988. "A Recursive Model of Intraurban Trip-Making," Environment and Planning A, , vol. 20(4), pages 535-546, April.
    17. Chieh-Hua Wen & Frank Koppelman, 2000. "A conceptual and methdological framework for the generation of activity-travel patterns," Transportation, Springer, vol. 27(1), pages 5-23, February.
    18. Mohammad M. Hamed & Fred L. Mannering, 1993. "Modeling Travelers' Postwork Activity Involvement: Toward a New Methodology," Transportation Science, INFORMS, vol. 27(4), pages 381-394, November.
    19. Lee, Yuhwa & Hickman, Mark & Washington, Simon, 2007. "Household type and structure, time-use pattern, and trip-chaining behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 1004-1020, December.
    20. Goulias, Konstadinos G. & Kitamura, Ryuichi, 1991. "Recursive Model System for Trip Generation and Trip Chaining," University of California Transportation Center, Working Papers qt6vn683d3, University of California Transportation Center.
    21. Golob, Thomas F. & McNally, Michael G., 1997. "A model of activity participation and travel interactions between household heads," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 177-194, June.
    22. David Hensher & April Reyes, 2000. "Trip chaining as a barrier to the propensity to use public transport," Transportation, Springer, vol. 27(4), pages 341-361, December.
    23. Bhat, Chandra R. & Sardesai, Rupali, 2006. "The impact of stop-making and travel time reliability on commute mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 709-730, November.
    24. Bhat, Chandra R. & Singh, Sujit K., 2000. "A comprehensive daily activity-travel generation model system for workers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(1), pages 1-22, January.
    25. Ye, Xin & Pendyala, Ram M. & Gottardi, Giovanni, 2007. "An exploration of the relationship between mode choice and complexity of trip chaining patterns," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 96-113, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafiq, Rezwana & McNally, Michael G., 2020. "An empirical analysis and policy implications of work tours utilizing public transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 237-259.
    2. Tanjeeb Ahmed & Michael Hyland, 2023. "Exploring the role of ride-hailing in trip chains," Transportation, Springer, vol. 50(3), pages 959-1002, June.
    3. Bautista-Hernández, Dorian Antonio, 2022. "Individual, household, and urban form determinants of trip chaining of non-work travel in México City," Journal of Transport Geography, Elsevier, vol. 98(C).
    4. Gil Solá, Ana, 2016. "Constructing work travel inequalities: The role of household gender contracts," Journal of Transport Geography, Elsevier, vol. 53(C), pages 32-40.
    5. Tufayel Chowdhury & Darren M. Scott, 2020. "Role of the built environment on trip-chaining behavior: an investigation of workers and non-workers in Halifax, Nova Scotia," Transportation, Springer, vol. 47(2), pages 737-761, April.
    6. Klein, Nicholas J. & Guerra, Erick & Smart, Michael J., 2018. "The Philadelphia story: Age, race, gender and changing travel trends," Journal of Transport Geography, Elsevier, vol. 69(C), pages 19-25.
    7. Chidambaram, Bhuvanachithra & Scheiner, Joachim, 2020. "Understanding relative commuting within dual-earner couples in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 113-129.
    8. Chandra R. Bhat & Patrícia S. Lavieri, 2018. "A new mixed MNP model accommodating a variety of dependent non-normal coefficient distributions," Theory and Decision, Springer, vol. 84(2), pages 239-275, March.
    9. Rafiq, Rezwana & McNally, Michael G., 2022. "A structural analysis of the work tour behavior of transit commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 61-79.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafiq, Rezwana & McNally, Michael G., 2022. "A structural analysis of the work tour behavior of transit commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 61-79.
    2. Michael Duncan, 2016. "How much can trip chaining reduce VMT? A simplified method," Transportation, Springer, vol. 43(4), pages 643-659, July.
    3. Huang, Yuqiao & Gao, Linjie & Ni, Anning & Liu, Xiaoning, 2021. "Analysis of travel mode choice and trip chain pattern relationships based on multi-day GPS data: A case study in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 93(C).
    4. Rezwana Rafiq & Michael G. McNally, 2021. "A study of tour formation: pre-, during, and post-recession analysis," Transportation, Springer, vol. 48(5), pages 2187-2233, October.
    5. Li, Zhibin & Wang, Wei & Yang, Chen & Jiang, Guojun, 2013. "Exploring the causal relationship between bicycle choice and trip chain pattern," Transport Policy, Elsevier, vol. 29(C), pages 170-177.
    6. Schwanen, Tim & Dijst, Martin, 2002. "Travel-time ratios for visits to the workplace: the relationship between commuting time and work duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(7), pages 573-592, August.
    7. Zidan Mao & Dick Ettema & Martin Dijst, 2018. "Analysis of travel time and mode choice shift for non-work stops in commuting: case study of Beijing, China," Transportation, Springer, vol. 45(3), pages 751-766, May.
    8. Lee, Yuhwa & Hickman, Mark & Washington, Simon, 2007. "Household type and structure, time-use pattern, and trip-chaining behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 1004-1020, December.
    9. François Sprumont & Ariane Scheffer & Geoffrey Caruso & Eric Cornelis & Francesco Viti, 2022. "Quantifying the Relation between Activity Pattern Complexity and Car Use Using a Partial Least Square Structural Equation Model," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    10. Tufayel Chowdhury & Darren M. Scott, 2020. "Role of the built environment on trip-chaining behavior: an investigation of workers and non-workers in Halifax, Nova Scotia," Transportation, Springer, vol. 47(2), pages 737-761, April.
    11. Steven R. Gehrke & Timothy F. Welch, 2017. "The built environment determinants of activity participation and walking near the workplace," Transportation, Springer, vol. 44(5), pages 941-956, September.
    12. Bautista-Hernández, Dorian Antonio, 2022. "Individual, household, and urban form determinants of trip chaining of non-work travel in México City," Journal of Transport Geography, Elsevier, vol. 98(C).
    13. Subbarao, S.S.V. & Krishna Rao, K,V., 2013. "Trip Chaining Behavior in Developing Countries: A Study of Mumbai Metropolitan Region, India," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 53, pages 1-7.
    14. João De Abreu e Silva, 2018. "The Effects of Land-Use Patterns on Home-Based Tour Complexity and Total Distances Traveled: A Path Analysis," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    15. Joseph F. Wyer, 2018. "Urban Transportation Mode Choice And Trip Complexity: Bicyclists Stick To Their Gears," Economic Inquiry, Western Economic Association International, vol. 56(3), pages 1777-1787, July.
    16. Yang, Liya & Shen, Qing & Li, Zhibin, 2016. "Comparing travel mode and trip chain choices between holidays and weekdays," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 273-285.
    17. Jahun Koo & Jiyoon Kim & Sungtaek Choi & Sangho Choo, 2022. "Identifying the Causal Relationship between Travel and Activity Times: A Structural Equation Modeling Approach," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    18. Xuemei Fu & Zhicai Juan, 2016. "Empirical analysis and comparisons about time-allocation patterns across segments based on mode-specific preferences," Transportation, Springer, vol. 43(1), pages 37-51, January.
    19. Liya Yang & Lingqian Hu & Zhenbo Wang, 2019. "The built environment and trip chaining behaviour revisited: The joint effects of the modifiable areal unit problem and tour purpose," Urban Studies, Urban Studies Journal Limited, vol. 56(4), pages 795-817, March.
    20. Ge Gao & Huijun Sun & Jianjun Wu, 2019. "Activity-based trip chaining behavior analysis in the network under the parking fee scheme," Transportation, Springer, vol. 46(3), pages 647-669, June.

    More about this item

    Keywords

    Commute; Tour; Stop; Trip chaining; US;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:47:y:2015:i:c:p:109-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.