IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v76y2020i2d10.1007_s10640-020-00424-1.html
   My bibliography  Save this article

Technical Change and Green Productivity

Author

Listed:
  • Peng Li

    (Institute of Industrial Economics)

  • Yaofu Ouyang

    (Institute of Economics)

Abstract

When technologies could be “dirty” and “clean” in the context of green development, technical change does not necessarily mean (green) productivity growth. This paper studies the nonlinear impact of technical change on green productivity in China by applying a panel smooth transition regression approach with a panel data set of 284 prefecture-level cities from 2004 to 2015. Green productivity is measured by the meta-frontier Malmquist–Luenberger productivity growth (MML) index. Technical change is considered in three dimensions: indigenous technical change indicated by the stock of knowledge based on patents, technology transfers from foreign direct investment (FDI), and absorptive capacity. We find a non-linear relationship between technical change and green productivity contingent on specific economic situations and the city’s endowment of natural resources. In general, indigenous technical change shows an adverse effect on green productivity in China, which is much more prominent in the resource-dependent cities than in the non-resource-dependent cities. Technology transfers from FDI may either improve or hinder green productivity growth as economic situations change, while absorptive capacity has a small but positive effect. Also, these two effects are affected by the city’s endowment of natural resources. Accordingly, we discuss some policy implications.

Suggested Citation

  • Peng Li & Yaofu Ouyang, 2020. "Technical Change and Green Productivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(2), pages 271-298, July.
  • Handle: RePEc:kap:enreec:v:76:y:2020:i:2:d:10.1007_s10640-020-00424-1
    DOI: 10.1007/s10640-020-00424-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10640-020-00424-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10640-020-00424-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sourafel Girma & Yundan Gong & Holger Görg & Sandra Lancheros, 2016. "Estimating direct and indirect effects of foreign direct investment on firm productivity in the presence of interactions between firms," World Scientific Book Chapters, in: MULTINATIONAL ENTERPRISES AND HOST COUNTRY DEVELOPMENT, chapter 12, pages 227-239, World Scientific Publishing Co. Pte. Ltd..
    2. Paul Lanoie & Michel Patry & Richard Lajeunesse, 2008. "Environmental regulation and productivity: testing the porter hypothesis," Journal of Productivity Analysis, Springer, vol. 30(2), pages 121-128, October.
    3. Rachel Griffith & Stephen Redding & John Van Reenen, 2004. "Mapping the Two Faces of R&D: Productivity Growth in a Panel of OECD Industries," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 883-895, November.
    4. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    5. Leahy, Dermot & Neary, J. Peter, 2007. "Absorptive capacity, R&D spillovers, and public policy," International Journal of Industrial Organization, Elsevier, vol. 25(5), pages 1089-1108, October.
    6. Rafiq, Shuddhasattwa & Salim, Ruhul & Nielsen, Ingrid, 2016. "Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies," Energy Economics, Elsevier, vol. 56(C), pages 20-28.
    7. Li, Xibao, 2011. "Sources of External Technology, Absorptive Capacity, and Innovation Capability in Chinese State-Owned High-Tech Enterprises," World Development, Elsevier, vol. 39(7), pages 1240-1248, July.
    8. Gilbert Colletaz & Christophe Hurlin, 2006. "Threshold Effects in the Public Capital Productivity: an International Panel Smooth Transition Approach," Post-Print halshs-00257487, HAL.
    9. Kogut, Bruce & Chang, Sea Jin, 1991. "Technological Capabilities and Japanese Foreign Direct Investment in the United States," The Review of Economics and Statistics, MIT Press, vol. 73(3), pages 401-413, August.
    10. Borensztein, E. & De Gregorio, J. & Lee, J-W., 1998. "How does foreign direct investment affect economic growth?1," Journal of International Economics, Elsevier, vol. 45(1), pages 115-135, June.
    11. Nicole Madariaga & Sandra Poncet, 2007. "FDI in Chinese Cities: Spillovers and Impact on Growth," The World Economy, Wiley Blackwell, vol. 30(5), pages 837-862, May.
    12. David Popp, 2012. "The Role of Technological Change in Green Growth," NBER Working Papers 18506, National Bureau of Economic Research, Inc.
    13. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    14. Brian J. Aitken & Ann E. Harrison, 2022. "Do Domestic Firms Benefit from Direct Foreign Investment? Evidence from Venezuela," World Scientific Book Chapters, in: Globalization, Firms, and Workers, chapter 6, pages 139-152, World Scientific Publishing Co. Pte. Ltd..
    15. Albert G. Z. Hu & Gary H. Jefferson, 2002. "FDI Impact and Spillover: Evidence from China's Electronic and Textile Industries," The World Economy, Wiley Blackwell, vol. 25(8), pages 1063-1076, August.
    16. Elliott, Robert J.R. & Sun, Puyang & Chen, Siyang, 2013. "Energy intensity and foreign direct investment: A Chinese city-level study," Energy Economics, Elsevier, vol. 40(C), pages 484-494.
    17. Keller, Wolfgang, 2010. "International Trade, Foreign Direct Investment, and Technology Spillovers," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 793-829, Elsevier.
    18. Levinson, Arik, 2003. "Environmental Regulatory Competition: A Status Report and Some New Evidence," National Tax Journal, National Tax Association;National Tax Journal, vol. 56(1), pages 91-106, March.
    19. Daron Acemoglu & Joshua Linn, 2004. "Market Size in Innovation: Theory and Evidence from the Pharmaceutical Industry," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(3), pages 1049-1090.
    20. Hassler, John & Olovsson, Conny, 2012. "Energy-Saving Technical Change," CEPR Discussion Papers 9177, C.E.P.R. Discussion Papers.
    21. Ugur, Mehmet & Trushin, Eshref & Solomon, Edna & Guidi, Francesco, 2016. "R&D and productivity in OECD firms and industries: A hierarchical meta-regression analysis," Research Policy, Elsevier, vol. 45(10), pages 2069-2086.
    22. repec:clg:wpaper:2008-02 is not listed on IDEAS
    23. Liu, Zhiqiang, 2008. "Foreign direct investment and technology spillovers: Theory and evidence," Journal of Development Economics, Elsevier, vol. 85(1-2), pages 176-193, February.
    24. Chen, Shiyi & Jefferson, Gary H. & Zhang, Jun, 2011. "Structural change, productivity growth and industrial transformation in China," China Economic Review, Elsevier, vol. 22(1), pages 133-150, March.
    25. Wu, Yanrui, 2012. "Energy intensity and its determinants in China's regional economies," Energy Policy, Elsevier, vol. 41(C), pages 703-711.
    26. André Grimaud & Luc Rouge, 2008. "Environment, Directed Technical Change and Economic Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 41(4), pages 439-463, December.
    27. Coe, David T & Helpman, Elhanan & Hoffmaister, Alexander W, 1997. "North-South R&D Spillovers," Economic Journal, Royal Economic Society, vol. 107(440), pages 134-149, January.
    28. Blalock, Garrick & Gertler, Paul J., 2009. "How firm capabilities affect who benefits from foreign technology," Journal of Development Economics, Elsevier, vol. 90(2), pages 192-199, November.
    29. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    30. Tian, Peng & Lin, Boqiang, 2017. "Promoting green productivity growth for China's industrial exports: Evidence from a hybrid input-output model," Energy Policy, Elsevier, vol. 111(C), pages 394-402.
    31. Ronald Findlay, 1978. "Relative Backwardness, Direct Foreign Investment, and the Transfer of Technology: A Simple Dynamic Model," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 92(1), pages 1-16.
    32. Engelbrecht, Hans-Jurgen, 1997. "International R&D spillovers, human capital and productivity in OECD economies: An empirical investigation," European Economic Review, Elsevier, vol. 41(8), pages 1479-1488, August.
    33. Fisher-Vanden, Karen & Jefferson, Gary H. & Jingkui, Ma & Jianyi, Xu, 2006. "Technology development and energy productivity in China," Energy Economics, Elsevier, vol. 28(5-6), pages 690-705, November.
    34. Oh, Dong-hyun, 2010. "A metafrontier approach for measuring an environmentally sensitive productivity growth index," Energy Economics, Elsevier, vol. 32(1), pages 146-157, January.
    35. Cohen, Wesley M & Levinthal, Daniel A, 1989. "Innovation and Learning: The Two Faces of R&D," Economic Journal, Royal Economic Society, vol. 99(397), pages 569-596, September.
    36. Jiang, Lei & Folmer, Henk & Ji, Minhe, 2014. "The drivers of energy intensity in China: A spatial panel data approach," China Economic Review, Elsevier, vol. 31(C), pages 351-360.
    37. Beata Smarzynska Javorcik, 2004. "Does Foreign Direct Investment Increase the Productivity of Domestic Firms? In Search of Spillovers Through Backward Linkages," American Economic Review, American Economic Association, vol. 94(3), pages 605-627, June.
    38. Branstetter, Lee, 2006. "Is foreign direct investment a channel of knowledge spillovers? Evidence from Japan's FDI in the United States," Journal of International Economics, Elsevier, vol. 68(2), pages 325-344, March.
    39. Robert E. Hall & Charles I. Jones, 1999. "Why do Some Countries Produce So Much More Output Per Worker than Others?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(1), pages 83-116.
    40. Alfaro, Laura & Chanda, Areendam & Kalemli-Ozcan, Sebnem & Sayek, Selin, 2004. "FDI and economic growth: the role of local financial markets," Journal of International Economics, Elsevier, vol. 64(1), pages 89-112, October.
    41. Sourafel Girma, 2005. "Absorptive Capacity and Productivity Spillovers from FDI: A Threshold Regression Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(3), pages 281-306, June.
    42. Holger Görg & Eric Strobl, 2016. "Multinational Companies And Productivity Spillovers: A Meta-Analysis," World Scientific Book Chapters, in: MULTINATIONAL ENTERPRISES AND HOST COUNTRY DEVELOPMENT Volume 53: World Scientific Studies in International Economics, chapter 8, pages 145-161, World Scientific Publishing Co. Pte. Ltd..
    43. Wang, Jian-Ye & Blomstrom, Magnus, 1992. "Foreign investment and technology transfer : A simple model," European Economic Review, Elsevier, vol. 36(1), pages 137-155, January.
    44. Kinoshita, Yuko, 2001. "R&D and Technology Spillovers through FDI: Innovation and Absorptive Capacity," CEPR Discussion Papers 2775, C.E.P.R. Discussion Papers.
    45. James Ang, 2009. "Foreign direct investment and its impact on the Thai economy: the role of financial development," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 33(3), pages 316-323, July.
    46. Yuxiang, Karl & Chen, Zhongchang, 2010. "Government expenditure and energy intensity in China," Energy Policy, Elsevier, vol. 38(2), pages 691-694, February.
    47. Alwyn Young, 2003. "Gold into Base Metals: Productivity Growth in the People's Republic of China during the Reform Period," Journal of Political Economy, University of Chicago Press, vol. 111(6), pages 1220-1261, December.
    48. Albert G. Z. Hu & Gary H. Jefferson & Qian Jinchang, 2005. "R&D and Technology Transfer: Firm-Level Evidence from Chinese Industry," The Review of Economics and Statistics, MIT Press, vol. 87(4), pages 780-786, November.
    49. Matthew A. Cole & Robert J. R. Elliott, 2005. "FDI and the Capital Intensity of “Dirty” Sectors: A Missing Piece of the Pollution Haven Puzzle," Review of Development Economics, Wiley Blackwell, vol. 9(4), pages 530-548, November.
    50. Rachel Griffith & Stephen Redding & John Van Reenen, 2003. "R&D and Absorptive Capacity: Theory and Empirical Evidence," Scandinavian Journal of Economics, Wiley Blackwell, vol. 105(1), pages 99-118, March.
    51. Liu, Guangtian & Wang, Bing & Zhang, Ning, 2016. "A coin has two sides: Which one is driving China’s green TFP growth?," Economic Systems, Elsevier, vol. 40(3), pages 481-498.
    52. Arik Levinson & M. Scott Taylor, 2008. "Unmasking The Pollution Haven Effect," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 49(1), pages 223-254, February.
    53. Damijan, Joze P. & Knell, Mark & Majcen, Boris & Rojec, Matija, 2003. "The role of FDI, R&D accumulation and trade in transferring technology to transition countries: evidence from firm panel data for eight transition countries," Economic Systems, Elsevier, vol. 27(2), pages 189-204, June.
    54. Yang, Chih-Hai & Tseng, Yu-Hsuan & Chen, Chiang-Ping, 2012. "Environmental regulations, induced R&D, and productivity: Evidence from Taiwan's manufacturing industries," Resource and Energy Economics, Elsevier, vol. 34(4), pages 514-532.
    55. Li, Ke & Lin, Boqiang, 2017. "Economic growth model, structural transformation, and green productivity in China," Applied Energy, Elsevier, vol. 187(C), pages 489-500.
    56. Xie, Rong-hui & Yuan, Yi-jun & Huang, Jing-jing, 2017. "Different Types of Environmental Regulations and Heterogeneous Influence on “Green” Productivity: Evidence from China," Ecological Economics, Elsevier, vol. 132(C), pages 104-112.
    57. Eskeland, Gunnar S. & Harrison, Ann E., 2003. "Moving to greener pastures? Multinationals and the pollution haven hypothesis," Journal of Development Economics, Elsevier, vol. 70(1), pages 1-23, February.
    58. Sadorsky, Perry, 2013. "Do urbanization and industrialization affect energy intensity in developing countries?," Energy Economics, Elsevier, vol. 37(C), pages 52-59.
    59. Glass, Amy Jocelyn & Saggi, Kamal, 1998. "International technology transfer and the technology gap," Journal of Development Economics, Elsevier, vol. 55(2), pages 369-398, April.
    60. Zhang, Chunhong & Liu, Haiying & Bressers, Hans Th.A. & Buchanan, Karen S., 2011. "Productivity growth and environmental regulations - accounting for undesirable outputs: Analysis of China's thirty provincial regions using the Malmquist–Luenberger index," Ecological Economics, Elsevier, vol. 70(12), pages 2369-2379.
    61. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    62. Huang, Junbing & Du, Dan & Tao, Qizhi, 2017. "An analysis of technological factors and energy intensity in China," Energy Policy, Elsevier, vol. 109(C), pages 1-9.
    63. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    64. Peter A. Stott & D. A. Stone & M. R. Allen, 2004. "Human contribution to the European heatwave of 2003," Nature, Nature, vol. 432(7017), pages 610-614, December.
    65. Richard Kneller, 2005. "Frontier Technology, Absorptive Capacity and Distance," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(1), pages 1-23, February.
    66. Haddad, Mona & Harrison, Ann, 1993. "Are there positive spillovers from direct foreign investment? : Evidence from panel data for Morocco," Journal of Development Economics, Elsevier, vol. 42(1), pages 51-74, October.
    67. Popp, David, 2012. "The role of technological change in green growth," Policy Research Working Paper Series 6239, The World Bank.
    68. Yongrok Choi & Dong-hyun Oh & Ning Zhang, 2015. "Environmentally sensitive productivity growth and its decompositions in China: a metafrontier Malmquist–Luenberger productivity index approach," Empirical Economics, Springer, vol. 49(3), pages 1017-1043, November.
    69. Alwyn Young, 1995. "The Tyranny of Numbers: Confronting the Statistical Realities of the East Asian Growth Experience," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(3), pages 641-680.
    70. Durham, J.B.J. Benson, 2004. "Absorptive capacity and the effects of foreign direct investment and equity foreign portfolio investment on economic growth," European Economic Review, Elsevier, vol. 48(2), pages 285-306, April.
    71. Popp, David & Hascic, Ivan & Medhi, Neelakshi, 2011. "Technology and the diffusion of renewable energy," Energy Economics, Elsevier, vol. 33(4), pages 648-662, July.
    72. Zhang, Zibin & Ye, Jianliang, 2015. "Decomposition of environmental total factor productivity growth using hyperbolic distance functions: A panel data analysis for China," Energy Economics, Elsevier, vol. 47(C), pages 87-97.
    73. Hélène Dernis & Mosahid Khan, 2004. "Triadic Patent Families Methodology," OECD Science, Technology and Industry Working Papers 2004/2, OECD Publishing.
    74. Yu-Ying Lin, Eugene & Chen, Ping-Yu & Chen, Chi-Chung, 2013. "Measuring green productivity of country: A generlized metafrontier Malmquist productivity index approach," Energy, Elsevier, vol. 55(C), pages 340-353.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuang, Yunming & Lin, Boqiang, 2022. "Natural gas resource utilization, environmental policy and green economic development: Empirical evidence from China," Resources Policy, Elsevier, vol. 79(C).
    2. Kai Tang & Qianbo Chen & Weijie Tan & Yi Jun Wu Feng, 2022. "The Impact of Financial Deepening on Carbon Reductions in China: Evidence from City- and Enterprise-Level Data," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    3. Ke Xu & Peiya Zhao, 2023. "Does Green Finance Promote Green Total Factor Productivity? Empirical Evidence from China," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    4. Fei Peng & Shibiao Zhou & Tao Ding & Huaqing Wu, 2023. "Impact of fiscal expenditure stress on green transformation risk: evidence from China education authority reform," Economic Change and Restructuring, Springer, vol. 56(6), pages 4565-4601, December.
    5. Michael L. Polemis & Mike G. Tsionas, 2022. "Endogenous productivity: a new Bayesian perspective," Annals of Operations Research, Springer, vol. 318(1), pages 425-451, November.
    6. Zhao, Guilin & Xing, Liudong, 2021. "Reliability analysis of body sensor networks subject to random isolation time," Reliability Engineering and System Safety, Elsevier, vol. 207(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neil Foster-McGregor, 2012. "Innovation and Technology Transfer across Countries," wiiw Research Reports 380, The Vienna Institute for International Economic Studies, wiiw.
    2. Crespo, Nuno & Fontoura, Maria Paula, 2007. "Determinant Factors of FDI Spillovers - What Do We Really Know?," World Development, Elsevier, vol. 35(3), pages 410-425, March.
    3. Klaus E Meyer & Evis Sinani, 2009. "When and where does foreign direct investment generate positive spillovers? A meta-analysis," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 40(7), pages 1075-1094, September.
    4. Holger Görg & David Greenaway, 2016. "Much Ado about Nothing? Do Domestic Firms Really Benefit from Foreign Direct Investment?," World Scientific Book Chapters, in: MULTINATIONAL ENTERPRISES AND HOST COUNTRY DEVELOPMENT Volume 53: World Scientific Studies in International Economics, chapter 9, pages 163-189, World Scientific Publishing Co. Pte. Ltd..
    5. Yoshimichi Murakami & Keijiro Otsuka, 2017. "A Review of the Literature on Productivity Impacts of Global Value Chains and Foreign Direct Investment: Towards an Integrated Approach," Discussion Paper Series DP2017-19, Research Institute for Economics & Business Administration, Kobe University, revised Aug 2019.
    6. Ben Hamida, Lamia & Gugler, Philippe, 2009. "Are there demonstration-related spillovers from FDI?: Evidence from Switzerland," International Business Review, Elsevier, vol. 18(5), pages 494-508, October.
    7. Wei Jin, 2012. "Can China Harness Globalization to Reap Carbon Savings? Modeling International Technology Diffusion in a Multi-region Framework," CAMA Working Papers 2012-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    8. Wei Jin, 2012. "International Knowledge Spillover and Technology Externality: Why Multilateral R&D Coordination Matters for Global Climate Governance," CAMA Working Papers 2012-53, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    9. Lai, Mingyong & Wang, Hua & Zhu, Shujin, 2009. "Double-edged effects of the technology gap and technology spillovers: Evidence from the Chinese industrial sector," China Economic Review, Elsevier, vol. 20(3), pages 414-424, September.
    10. Lu, Qian & Zhao, Yunhui, 2010. "Spillover Effects of FDI in China: From the Perspective of Technology Gaps," MPRA Paper 81084, University Library of Munich, Germany.
    11. Hamida, Lamia Ben, 2013. "Are there regional spillovers from FDI in the Swiss manufacturing industry?," International Business Review, Elsevier, vol. 22(4), pages 754-769.
    12. Hübler, Michael, 2009. "Energy saving technology diffusion via FDI and trade: a CGE model of China," Kiel Working Papers 1479, Kiel Institute for the World Economy (IfW Kiel).
    13. Sun, Huaping & Edziah, Bless Kofi & Kporsu, Anthony Kwaku & Sarkodie, Samuel Asumadu & Taghizadeh-Hesary, Farhad, 2021. "Energy efficiency: The role of technological innovation and knowledge spillover," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    14. Muhammad Ali & Uwe Cantner & Ipsita Roy, 2017. "Knowledge Spillovers Through FDI and Trade: The Moderating Role of Quality-Adjusted Human Capital," Economic Complexity and Evolution, in: Andreas Pyka & Uwe Cantner (ed.), Foundations of Economic Change, pages 357-391, Springer.
    15. Seda Köymen Özer & Selin Sayek Böke, 2017. "The Characteristics of Domestic Firms: Materializing Productivity Spillovers from FDI," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 53(11), pages 2562-2584, November.
    16. Tomáš Havránek & Zuzana Iršová, 2010. "Meta-Analysis of Intra-Industry FDI Spillovers: Updated Evidence," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 60(2), pages 151-174, May.
    17. Damijan, Jože P. & Rojec, Matija & Majcen, Boris & Knell, Mark, 2013. "Impact of firm heterogeneity on direct and spillover effects of FDI: Micro-evidence from ten transition countries," Journal of Comparative Economics, Elsevier, vol. 41(3), pages 895-922.
    18. Matija Rojec & Mark Knell, 2018. "Why Is There A Lack Of Evidence On Knowledge Spillovers From Foreign Direct Investment?," Journal of Economic Surveys, Wiley Blackwell, vol. 32(3), pages 579-612, July.
    19. Teixeira, Aurora A.C. & Fortuna, Natércia, 2010. "Human capital, R&D, trade, and long-run productivity. Testing the technological absorption hypothesis for the Portuguese economy, 1960-2001," Research Policy, Elsevier, vol. 39(3), pages 335-350, April.
    20. Puman Ouyang & Shunli Yao, 2017. "Developing inland China: The role of coastal foreign direct investment and exports," The World Economy, Wiley Blackwell, vol. 40(11), pages 2403-2423, November.

    More about this item

    Keywords

    Technical change; Green productivity; PSTR; FDI; Absorptive capacity;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:76:y:2020:i:2:d:10.1007_s10640-020-00424-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.