IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v41y2007i1p1-14.html
   My bibliography  Save this article

Risk Aversion, Road Choice, and the One-Armed Bandit Problem

Author

Listed:
  • Jean-Philippe Chancelier

    (CERMICS, École des ponts Paris Tech, 77455 Marne la Vallée Cedex 2, France)

  • Michel De Lara

    (CERMICS, École des ponts Paris Tech, 77455 Marne la Vallée Cedex 2, France)

  • André de Palma

    (Université de Cergy-Pontoise, École des ponts Paris Tech, CORE, and Institut universitaire de France, France)

Abstract

This paper provides a theoretical analysis of advanced traveler information systems for road choice with risk-averse drivers who rationally learn over time, in a simple setting. For this purpose, we study the one-armed bandit problem where a driver selects, day after day, either a safe or a random road. Four information regimes are envisaged. The visionary driver knows beforehand, with certainty, the travel time on the random road, while the locally informed driver needs to select a road to acquire information on it. Two intermediary information regimes (fully and globally) are also envisaged. We analyze these four regimes and compare the optimal strategies and the individual benefits with respect to individual risk aversion. A numerical example also illustrates the impact of risk aversion on dynamic optimal strategies.

Suggested Citation

  • Jean-Philippe Chancelier & Michel De Lara & André de Palma, 2007. "Risk Aversion, Road Choice, and the One-Armed Bandit Problem," Transportation Science, INFORMS, vol. 41(1), pages 1-14, February.
  • Handle: RePEc:inm:ortrsc:v:41:y:2007:i:1:p:1-14
    DOI: 10.1287/trsc.1060.0179
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1060.0179
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1060.0179?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thierry Magnac & Jean-Marc Robin, 1999. "Dynamic stochastic dominance in bandit decision problems," Theory and Decision, Springer, vol. 47(3), pages 267-295, December.
    2. de Palma, André & Picard, Nathalie, 2005. "Route choice decision under travel time uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(4), pages 295-324, May.
    3. David Levinson, 2003. "The Value of Advanced Traveler Information Systems for Route Choice," Working Papers 200307, University of Minnesota: Nexus Research Group.
    4. Chris Hendrickson & George Kocur, 1981. "Schedule Delay and Departure Time Decisions in a Deterministic Model," Transportation Science, INFORMS, vol. 15(1), pages 62-77, February.
    5. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    6. André de Palma & Nathalie Picard, 2006. "Route Choice Behaviour with Risk-Averse Users," Chapters, in: Aura Reggiani & Peter Nijkamp (ed.), Spatial Dynamics, Networks and Modelling, chapter 7, Edward Elgar Publishing.
    7. Dirk Helbing & Martin Schönhof & Hans-Ulrich Stark & Janusz A. Hołyst, 2005. "How Individuals Learn To Take Turns: Emergence Of Alternating Cooperation In A Congestion Game And The Prisoner'S Dilemma," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 87-116.
    8. Srinivasan, Karthik K. & Mahmassani, Hani S., 2003. "Analyzing heterogeneity and unobserved structural effects in route-switching behavior under ATIS: a dynamic kernel logit formulation," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 793-814, November.
    9. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    10. Horowitz, Joel L., 1984. "The stability of stochastic equilibrium in a two-link transportation network," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 13-28, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Casper G. Chorus & Harry J.P. Timmermans, 2011. "Personal Intelligent Travel Assistants," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 25, Edward Elgar Publishing.
    2. Malekipirbazari, Milad & Çavuş, Özlem, 2024. "Index policy for multiarmed bandit problem with dynamic risk measures," European Journal of Operational Research, Elsevier, vol. 312(2), pages 627-640.
    3. Jean-Philippe Chancelier & Michel Lara & André Palma, 2009. "Risk aversion in expected intertemporal discounted utilities bandit problems," Theory and Decision, Springer, vol. 67(4), pages 433-440, October.
    4. Mark W Horner, 2010. "Exploring the Sensitivity of Jobs — Housing Statistics to Imperfect Travel Time Information," Environment and Planning B, , vol. 37(2), pages 367-375, April.
    5. André de Palma & Robin Lindsey & Nathalie Picard, 2012. "Risk Aversion, the Value of Information, and Traffic Equilibrium," Transportation Science, INFORMS, vol. 46(1), pages 1-26, February.
    6. Piet Rietveld, 2011. "The Economics of Information in Transport," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 24, Edward Elgar Publishing.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eran Ben-Elia & Robert Ishaq & Yoram Shiftan, 2013. "“If only I had taken the other road...”: Regret, risk and reinforced learning in informed route-choice," Transportation, Springer, vol. 40(2), pages 269-293, February.
    2. André De Palma & Nathalie Picard, 2005. "Congestion on risky routes with risk adverse drivers," ERSA conference papers ersa05p423, European Regional Science Association.
    3. Levy, Nadav & Klein, Ido & Ben-Elia, Eran, 2018. "Emergence of cooperation and a fair system optimum in road networks: A game-theoretic and agent-based modelling approach," Research in Transportation Economics, Elsevier, vol. 68(C), pages 46-55.
    4. André de Palma & Nathalie Picard, 2006. "Equilibria and Information Provision in Risky Networks with Risk-Averse Drivers," Transportation Science, INFORMS, vol. 40(4), pages 393-408, November.
    5. Ben-Elia, Eran & Shiftan, Yoram, 2010. "Which road do I take? A learning-based model of route-choice behavior with real-time information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 249-264, May.
    6. Li, Hao & Tu, Huizhao & Hensher, David A., 2016. "Integrating the mean–variance and scheduling approaches to allow for schedule delay and trip time variability under uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 151-163.
    7. Zhu, Zheng & Mardan, Atabak & Zhu, Shanjiang & Yang, Hai, 2021. "Capturing the interaction between travel time reliability and route choice behavior based on the generalized Bayesian traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 48-64.
    8. Yi-Shih Chung & Szu-Yu Tu, 2021. "Tri-reference-point hypothesis development for airport ground access behaviors," Transportation, Springer, vol. 48(5), pages 2159-2185, October.
    9. de Moraes Ramos, Giselle & Daamen, Winnie & Hoogendoorn, Serge, 2013. "Modelling travellers' heterogeneous route choice behaviour as prospect maximizers," Journal of choice modelling, Elsevier, vol. 6(C), pages 17-33.
    10. Wang, Yu & Wang, Yacan & Ettema, Dick & Mao, Zidan & Charlton, Samuel G. & Zhou, Huiyu, 2020. "Commuter value perceptions in peak avoidance behavior: An empirical study in the Beijing subway system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 70-84.
    11. B. G. Heydecker & J. D. Addison, 2005. "Analysis of Dynamic Traffic Equilibrium with Departure Time Choice," Transportation Science, INFORMS, vol. 39(1), pages 39-57, February.
    12. Kouwenhoven, Marco & de Jong, Gerard C. & Koster, Paul & van den Berg, Vincent A.C. & Verhoef, Erik T. & Bates, John & Warffemius, Pim M.J., 2014. "New values of time and reliability in passenger transport in The Netherlands," Research in Transportation Economics, Elsevier, vol. 47(C), pages 37-49.
    13. Palma, André de & Lindsey, Robin & Picard, Nathalie, 2015. "Trip-timing decisions and congestion with household scheduling preferences," Economics of Transportation, Elsevier, vol. 4(1), pages 118-131.
    14. Engelson, Leonid & Fosgerau, Mogens, 2016. "The cost of travel time variability: Three measures with properties," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 555-564.
    15. Emmerink, R., 1993. "Effects of information in road transport networks with recurrent congestion," Serie Research Memoranda 0065, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    16. Chen, Hongyu & Nie, Yu (Marco) & Yin, Yafeng, 2015. "Optimal multi-step toll design under general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 775-793.
    17. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun & Zhang, H. Michael, 2005. "Integrated scheduling of daily work activities and morning-evening commutes with bottleneck congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 41-60, January.
    18. Anthony Ziegelmeyer & Frédéric Koessler & Kene Boun My & Laurent Denant-Boèmont, 2008. "Road Traffic Congestion and Public Information: An Experimental Investigation," Journal of Transport Economics and Policy, University of Bath, vol. 42(1), pages 43-82, January.
    19. Yu Nie, 2015. "A New Tradable Credit Scheme for the Morning Commute Problem," Networks and Spatial Economics, Springer, vol. 15(3), pages 719-741, September.
    20. Xiao, Yu & Fukuda, Daisuke, 2015. "On the cost of misperceived travel time variability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 96-112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:41:y:2007:i:1:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.