IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8961-d868348.html
   My bibliography  Save this article

Can the Agglomeration of New Energy Industries Improve Environmental Efficiency?—Evidence from China

Author

Listed:
  • Yi Liang

    (School of Economics and Management, Xinjiang University, Urumqi 830046, China)

  • Xiaoli Hao

    (School of Economics and Management, Xinjiang University, Urumqi 830046, China
    Center for Innovation Management Research, Xinjiang University, Urumqi 830046, China)

Abstract

Improving environmental efficiency is the key to solving the contradiction between economic development and environmental degradation. In the process of realizing the “dual carbon” goal, the development of the new energy industry is typically characterized by having low carbon and is an important way to improve environmental efficiency. In this study, based on panel data from 2009 to 2018, the agglomeration levels of the new energy industry and the levels of environmental efficiency were measured. Moreover, the linear and nonlinear relationships between the agglomeration of the new energy industry and environmental efficiency were investigated, and the mediation effect model was used to verify the mechanism of action from a two-dimensional perspective. The results showed that (1) the levels of the agglomeration of the new energy industry ( NEA ) and environmental efficiency ( EE ) have generally increased with obvious “regional heterogeneity” and “polar characteristics”; (2) NEA can promote EE , with a marginal effect of 0.0347, but a strong positive driving effect only exists in the eastern region at present, which is higher than the national average level; (3) there is a double threshold effect within the process and the driving trend is “weak negative → weak positive → strong positive"; and (4) the advancement of industrial structures and direct foreign investments are the critical intermedia. Accordingly, this paper puts forward corresponding policy recommendations.

Suggested Citation

  • Yi Liang & Xiaoli Hao, 2022. "Can the Agglomeration of New Energy Industries Improve Environmental Efficiency?—Evidence from China," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8961-:d:868348
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8961/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8961/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Ke & Lu, Bin & Wei, Yi-Ming, 2013. "China’s regional energy and environmental efficiency: A Range-Adjusted Measure based analysis," Applied Energy, Elsevier, vol. 112(C), pages 1403-1415.
    2. Ren, Siyu & Hao, Yu & Wu, Haitao, 2022. "The role of outward foreign direct investment (OFDI) on green total factor energy efficiency: Does institutional quality matters? Evidence from China," Resources Policy, Elsevier, vol. 76(C).
    3. Yongqing Xiong & Shufeng Qin, 2021. "Differences in the effects of China’s new energy vehicle industry policies on market growth from the perspective of policy mix," Energy & Environment, , vol. 32(3), pages 542-561, May.
    4. Stijn Reinhard & C. A. Knox Lovell & Geert Thijssen, 2002. "Analysis of Environmental Efficiency Variation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(4), pages 1054-1065.
    5. Weyant, John P., 2011. "Accelerating the development and diffusion of new energy technologies: Beyond the "valley of death"," Energy Economics, Elsevier, vol. 33(4), pages 674-682, July.
    6. Taskin, Fatma & Zaim, Osman, 2000. "Searching for a Kuznets curve in environmental efficiency using kernel estimation," Economics Letters, Elsevier, vol. 68(2), pages 217-223, August.
    7. Kumar Mandal, Sabuj & Madheswaran, S., 2010. "Environmental efficiency of the Indian cement industry: An interstate analysis," Energy Policy, Elsevier, vol. 38(2), pages 1108-1118, February.
    8. Neij, Lena & Heiskanen, Eva & Strupeit, Lars, 2017. "The deployment of new energy technologies and the need for local learning," Energy Policy, Elsevier, vol. 101(C), pages 274-283.
    9. Li, Wenbo & Long, Ruyin & Chen, Hong, 2016. "Consumers’ evaluation of national new energy vehicle policy in China: An analysis based on a four paradigm model," Energy Policy, Elsevier, vol. 99(C), pages 33-41.
    10. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    11. Liu, Yingqi & Kokko, Ari, 2013. "Who does what in China’s new energy vehicle industry?," Energy Policy, Elsevier, vol. 57(C), pages 21-29.
    12. Zhao, Dan & Ji, Shou-feng & Wang, He-ping & Jiang, Li-wen, 2021. "How do government subsidies promote new energy vehicle diffusion in the complex network context? A three-stage evolutionary game model," Energy, Elsevier, vol. 230(C).
    13. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    14. Lee, Won-Woo, 2004. "US lessons for energy industry restructuring: based on natural gas and California electricity incidences," Energy Policy, Elsevier, vol. 32(2), pages 237-259, January.
    15. Wen, Xiaoqian & Guo, Yanfeng & Wei, Yu & Huang, Dengshi, 2014. "How do the stock prices of new energy and fossil fuel companies correlate? Evidence from China," Energy Economics, Elsevier, vol. 41(C), pages 63-75.
    16. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    17. Ericsson, Karin & Nilsson, Lars J. & Nilsson, Måns, 2011. "New energy strategies in the Swedish pulp and paper industry--The role of national and EU climate and energy policies," Energy Policy, Elsevier, vol. 39(3), pages 1439-1449, March.
    18. Loiter, Jeffrey M. & Norberg-Bohm, Vicki, 1999. "Technology policy and renewable energy: public roles in the development of new energy technologies," Energy Policy, Elsevier, vol. 27(2), pages 85-97, February.
    19. Yang, Mian & Yang, Fu-Xia & Chen, Xing-Peng, 2011. "Effects of substituting energy with capital on China's aggregated energy and environmental efficiency," Energy Policy, Elsevier, vol. 39(10), pages 6065-6072, October.
    20. Franco, Chiara & Sasidharan, Subash, 2010. "MNEs, technological efforts and channels of export spillover: An analysis of Indian manufacturing industries," Economic Systems, Elsevier, vol. 34(3), pages 270-288, September.
    21. Williams, Christopher & Vrabie, Alina, 2018. "Host country R&D determinants of MNE entry strategy: A study of ownership in the automobile industry," Research Policy, Elsevier, vol. 47(2), pages 474-486.
    22. Lund, Peter, 2006. "Market penetration rates of new energy technologies," Energy Policy, Elsevier, vol. 34(17), pages 3317-3326, November.
    23. Tsioliaridou, E. & Bakos, G.C. & Stadler, M., 2006. "A new energy planning methodology for the penetration of renewable energy technologies in electricity sector--application for the island of Crete," Energy Policy, Elsevier, vol. 34(18), pages 3757-3764, December.
    24. Hanxiao Wei & Huiqin Yao, 2022. "Environmental Regulation, Roundabout Production, and Industrial Structure Transformation and Upgrading: Evidence from China," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    25. Miki Malul & Yossi Hadad & Avner Ben‐Yair, 2009. "Measuring and ranking of economic, environmental and social efficiency of countries," International Journal of Social Economics, Emerald Group Publishing Limited, vol. 36(8), pages 832-843, July.
    26. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    27. Dong Feng & Jian Li & Xintao Li & Zaisheng Zhang, 2019. "The Effects of Urban Sprawl and Industrial Agglomeration on Environmental Efficiency: Evidence from the Beijing–Tianjin–Hebei Urban Agglomeration," Sustainability, MDPI, vol. 11(11), pages 1-12, May.
    28. Sajid Anwar & Sizhong Sun, 2019. "Firm heterogeneity and FDI-related productivity spillovers: A theoretical investigation," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 28(1), pages 1-10, January.
    29. Hao, Yu & Zhang, Zong-Yong & Yang, Chuxiao & Wu, Haitao, 2021. "Does structural labor change affect CO2 emissions? Theoretical and empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    30. Wu, Haitao & Hao, Yu & Ren, Siyu & Yang, Xiaodong & Xie, Guo, 2021. "Does internet development improve green total factor energy efficiency? Evidence from China," Energy Policy, Elsevier, vol. 153(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunyan Jiang & Feng Deng, 2022. "Multi-Dimensional Threshold Effects of the Digital Economy on Green Economic Growth?—New Evidence from China," Sustainability, MDPI, vol. 14(19), pages 1-22, October.
    2. Germán Arana-Landín & Naiara Uriarte-Gallastegi & Beñat Landeta-Manzano & Iker Laskurain-Iturbe, 2023. "The Contribution of Lean Management—Industry 4.0 Technologies to Improving Energy Efficiency," Energies, MDPI, vol. 16(5), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 182-189.
    2. César Salazar & Roberto Cárdenas-Retamal & Marcela Jaime, 2023. "Environmental efficiency in the salmon industry—an exploratory analysis around the 2007 ISA virus outbreak and subsequent regulations in Chile," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8107-8135, August.
    3. Fang, Zhen & Razzaq, Asif & Mohsin, Muhammad & Irfan, Muhammad, 2022. "Spatial spillovers and threshold effects of internet development and entrepreneurship on green innovation efficiency in China," Technology in Society, Elsevier, vol. 68(C).
    4. Wu, Haitao & Xue, Yan & Hao, Yu & Ren, Siyu, 2021. "How does internet development affect energy-saving and emission reduction? Evidence from China," Energy Economics, Elsevier, vol. 103(C).
    5. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    6. Ran, Qiying & Yang, Xiaodong & Yan, Hongchuan & Xu, Yang & Cao, Jianhong, 2023. "Natural resource consumption and industrial green transformation: Does the digital economy matter?," Resources Policy, Elsevier, vol. 81(C).
    7. Zebin Zheng & Wenjun Xiao & Ziye Cheng, 2023. "China’s Green Total Factor Energy Efficiency Assessment Based on Coordinated Reduction in Pollution and Carbon Emission: From the 11th to the 13th Five-Year Plan," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    8. Yujian Jin & Lihong Yu & Yan Wang, 2022. "Green Total Factor Productivity and Its Saving Effect on the Green Factor in China’s Strategic Minerals Industry from 1998–2017," IJERPH, MDPI, vol. 19(22), pages 1-20, November.
    9. Cailou Jiang & Ying Zhang & Maoliang Bu & Weishu Liu, 2018. "The Effectiveness of Government Subsidies on Manufacturing Innovation: Evidence from the New Energy Vehicle Industry in China," Sustainability, MDPI, vol. 10(6), pages 1-11, May.
    10. Graham, Mary, 2009. "Developing a social perspective to farm performance analysis," Ecological Economics, Elsevier, vol. 68(8-9), pages 2390-2398, June.
    11. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    12. Haikuo Zhang & Chaobo Zhou, 2023. "Construction of the Pilot Free Trade Zone and Chinese Green Total Factor Energy Efficiency," Sustainability, MDPI, vol. 15(12), pages 1-13, June.
    13. Kumar Mandal, Sabuj & Madheswaran, S., 2010. "Environmental efficiency of the Indian cement industry: An interstate analysis," Energy Policy, Elsevier, vol. 38(2), pages 1108-1118, February.
    14. Charles, Vincent & Kumar, Mukesh & Irene Kavitha, S., 2012. "Measuring the efficiency of assembled printed circuit boards with undesirable outputs using data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 136(1), pages 194-206.
    15. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    16. Yu Hao & Jingwen Huang & Yunxia Guo & Haitao Wu & Siyu Ren, 2022. "Does the legacy of state planning put pressure on ecological efficiency? Evidence from China," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3100-3121, November.
    17. Halkos, George & Petrou, Kleoniki Natalia, 2018. "A critical review of the main methods to treat undesirable outputs in DEA," MPRA Paper 90374, University Library of Munich, Germany.
    18. Hao, Xiaoli & Wen, Shufang & Xue, Yan & Wu, Haitao & Hao, Yu, 2023. "How to improve environment, resources and economic efficiency in the digital era?," Resources Policy, Elsevier, vol. 80(C).
    19. Chen, Nengcheng & Xu, Lei & Chen, Zeqiang, 2017. "Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models," Energy, Elsevier, vol. 134(C), pages 659-671.
    20. Hao, Xiaoli & Wen, Shufang & Li, Ke & Wu, Junwei & Wu, Haitao & Hao, Yu, 2023. "Environmental governance, executive incentive, and enterprise performance: Evidence from Chinese mineral enterprises," Resources Policy, Elsevier, vol. 85(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8961-:d:868348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.