Advanced Search
MyIDEAS: Login to save this article or follow this journal

China’s regional energy and environmental efficiency: A Range-Adjusted Measure based analysis

Contents:

Author Info

  • Wang, Ke
  • Lu, Bin
  • Wei, Yi-Ming

Abstract

Energy and environmental efficiency evaluation has recently attracted increasing interest in China. In this study, we utilize the Range-Adjusted Measure (RAM) based nonparametric approach to evaluate the regional energy and environmental efficiency of China over the period of 2006–2010. The desirable/good and undesirable/bad outputs, as well as the energy and non-energy inputs are considered in the efficiency evaluation so as to characterize the energy consumption, economic production, and CO2 emission process of different China’s regions. In addition, the economic concepts of natural disposability and managerial disposability are incorporated in the evaluation instead of the strong and weak disposability in conventional environmental efficiency evaluation. Therefore, the types of returns to scale and damages to scale of different China’s regions are measured and correspondingly the strategy and policy implications are proposed for guiding the future improvement of regional energy and environmental efficiency. This study finds that: (i) Beijing, Shanghai, and Guangdong had the highest integrated energy and environmental efficiency during the study period, which could be seen as the benchmarks of inefficient China’s regions. (ii) On average, east China had the highest integrated efficiency under natural disposability, and west China had the highest integrated efficiency under managerial disposability. (iii) During 2006–2010, the average production efficiency of China slightly decreased and the average emission efficiency of China slightly increased. (iv) Among China’s 30 regions, 19 regions exhibited decreasing returns to scale, 4 regions shown increasing returns to scale, and 7 regions have mixed returns to scale types under natural disposability in our study period. In addition, under managerial disposability, there are 18, 3 and 9 regions respectively exhibited increasing, decreasing and mixed damages to scale types over time. (v) For most Chinese regions, it is not recommended to simply increase or maintain their current scales of production, but alternatively, they should pay more attentions on technology innovation of energy utilization efficiency improvement, since up to 2010, China still had large energy conservation and emission reduction potentials.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S0306261913003152
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Applied Energy.

Volume (Year): 112 (2013)
Issue (Month): C ()
Pages: 1403-1415

as in new window
Handle: RePEc:eee:appene:v:112:y:2013:i:c:p:1403-1415

Contact details of provider:
Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description

Order Information:
Postal: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
Web: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic

Related research

Keywords: Energy efficiency; Environmental efficiency; Range-Adjusted Measure (RAM); Returns to scale; Damages to scale;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Timo Kuosmanen, 2005. "Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1077-1082.
  2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
  3. Ke Wang & Yi-Ming Wei & Xian Zhang, 2011. "A comparative analysis of China's regional energy and emission performance: Which is the better way to deal with undesirable outputs?," CEEP-BIT Working Papers 24, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  4. Shi, Guang-Ming & Bi, Jun & Wang, Jin-Nan, 2010. "Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs," Energy Policy, Elsevier, vol. 38(10), pages 6172-6179, October.
  5. Wang, Qunwei & Zhou, Peng & Zhou, Dequn, 2012. "Efficiency measurement with carbon dioxide emissions: The case of China," Applied Energy, Elsevier, vol. 90(1), pages 161-166.
  6. Wang, Ke & Zhang, Xian & Wei, Yi-Ming & Yu, Shiwei, 2013. "Regional allocation of CO2 emissions allowance over provinces in China by 2020," Energy Policy, Elsevier, vol. 54(C), pages 214-229.
  7. Yeh, Tsai-lien & Chen, Tser-yieth & Lai, Pei-ying, 2010. "A comparative study of energy utilization efficiency between Taiwan and China," Energy Policy, Elsevier, vol. 38(5), pages 2386-2394, May.
  8. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
  9. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
  10. Sueyoshi, Toshiyuki & Goto, Mika & Ueno, Takahiro, 2010. "Performance analysis of US coal-fired power plants by measuring three DEA efficiencies," Energy Policy, Elsevier, vol. 38(4), pages 1675-1688, April.
  11. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Data envelopment analysis for environmental assessment: Comparison between public and private ownership in petroleum industry," European Journal of Operational Research, Elsevier, vol. 216(3), pages 668-678.
  12. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
  13. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
  14. Yi, Wen-Jing & Zou, Le-Le & Guo, Jie & Wang, Kai & Wei, Yi-Ming, 2011. "How can China reach its CO2 intensity reduction targets by 2020? A regional allocation based on equity and development," Energy Policy, Elsevier, vol. 39(5), pages 2407-2415, May.
  15. Chu Wei & Jinlan Ni & Manhong Shen, 2009. "Empirical Analysis of Provincial Energy Efficiency in China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 17(5), pages 88-103.
  16. Bian, Yiwen & Yang, Feng, 2010. "Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon's entropy," Energy Policy, Elsevier, vol. 38(4), pages 1909-1917, April.
  17. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
  18. Fare, Rolf & Grosskopf, Shawna, 2004. "Modeling undesirable factors in efficiency evaluation: Comment," European Journal of Operational Research, Elsevier, vol. 157(1), pages 242-245, August.
  19. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency," European Journal of Operational Research, Elsevier, vol. 200(1), pages 320-322, January.
  20. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
  21. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "Measuring environmental performance under different environmental DEA technologies," Energy Economics, Elsevier, vol. 30(1), pages 1-14, January.
  22. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
  23. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "Methodological comparison between two unified (operational and environmental) efficiency measurements for environmental assessment," European Journal of Operational Research, Elsevier, vol. 210(3), pages 684-693, May.
  24. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Returns to scale and damages to scale under natural and managerial disposability: Strategy, efficiency and competitiveness of petroleum firms," Energy Economics, Elsevier, vol. 34(3), pages 645-662.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "DEA radial measurement for environmental assessment: A comparative study between Japanese chemical and pharmaceutical firms," Applied Energy, Elsevier, vol. 115(C), pages 502-513.
  2. Ling Wang & Zhongchang Chen & Dalai Ma & Pei Zhao, 2013. "Measuring Carbon Emissions Performance in 123 Countries: Application of Minimum Distance to the Strong Efficiency Frontier Analysis," Sustainability, MDPI, Open Access Journal, vol. 5(12), pages 5319-5332, December.
  3. Halkos, George & Tzeremes, Nickolaos, 2012. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from the UK regions," MPRA Paper 38147, University Library of Munich, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:112:y:2013:i:c:p:1403-1415. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.