IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i11p4019-d180103.html
   My bibliography  Save this article

Principal Component Analysis of Price Fluctuation in the Smart Grid Electricity Market

Author

Listed:
  • Kun Li

    (Business School, Beijing Normal University, Beijing 100875, China)

  • Joseph D. Cursio

    (Stuart School of Business, Illinois Institute of Technology, Chicago, IL 60661, USA
    Goodwin School of Business, Benedictine University, Lisle, IL 60532, USA)

  • Yunchuan Sun

    (Business School, Beijing Normal University, Beijing 100875, China)

Abstract

Large price fluctuations have become a significant character and impede resource allocation in the electricity market. Negative prices and peak load spike prices coexist and represent over-supply and over-demand, respectively. It is important to interpret the impact of these extreme prices on sustainable power management from the perspective of economics. In this paper, we build a principal component analysis (PCA) to assess the impact of the two opposite phenomena on the smart grid electricity system. We perform a big-data study using intra-day data from the Pennsylvania, New Jersey, and Maryland (PJM) electricity system with over 11,000 transmission lines. As the contribution, this paper (1) measures the price fluctuations from the perspective of economics, (2) captures and observes the full-length behavior of negative and spike pricing in a modern smart grid system with multi-transmission lines and high-frequency price updates, and (3) employs methods with distinctive advantages to bring more in-depth findings to interpret the smart grid system. We find that spike prices hold the principal explanatory power for electricity market fluctuation in all the transmission lines. The results are consistent with previous studies about resolutions such as electrical energy storage, transmission capacity upgrade, and demand response.

Suggested Citation

  • Kun Li & Joseph D. Cursio & Yunchuan Sun, 2018. "Principal Component Analysis of Price Fluctuation in the Smart Grid Electricity Market," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4019-:d:180103
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/11/4019/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/11/4019/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    2. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    3. Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003. "The Dynamics of Implied Volatilities: A Common Principal Components Approach," Review of Derivatives Research, Springer, vol. 6(3), pages 179-202, October.
    4. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
    5. Carlton, Dennis W, 1977. "Peak Load Pricing with Stochastic Demand," American Economic Review, American Economic Association, vol. 67(5), pages 1006-1010, December.
    6. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    7. Hendrik Bessembinder & Michael L. Lemmon, 2002. "Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets," Journal of Finance, American Finance Association, vol. 57(3), pages 1347-1382, June.
    8. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    9. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    10. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Technology.
    11. Lester Hadsell & Hany A. Shawky, 2006. "Electricity Price Volatility and the Marginal Cost of Congestion: An Empirical Study of Peak Hours on the NYISO Market, 2001-2004," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 157-180.
    12. Walawalkar, Rahul & Blumsack, Seth & Apt, Jay & Fernands, Stephen, 2008. "An economic welfare analysis of demand response in the PJM electricity market," Energy Policy, Elsevier, vol. 36(10), pages 3692-3702, October.
    13. Zareipour, Hamidreza & Bhattacharya, Kankar & Canizares, Claudio A., 2007. "Electricity market price volatility: The case of Ontario," Energy Policy, Elsevier, vol. 35(9), pages 4739-4748, September.
    14. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    15. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
    16. Stephen P. Holland & Erin T. Mansur, 2006. "The Short-Run Effects of Time-Varying Prices in Competitive Electricity Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 127-156.
    17. D.T. Nguyen, 1976. "The Problems of Peak Loads and Inventories," Bell Journal of Economics, The RAND Corporation, vol. 7(1), pages 242-248, Spring.
    18. John T. Wenders, 1976. "Peak Load Pricing in the Electric Utility Industry," Bell Journal of Economics, The RAND Corporation, vol. 7(1), pages 232-241, Spring.
    19. Ying-Yi Hong & Ching-Ping Wu, 2012. "Day-Ahead Electricity Price Forecasting Using a Hybrid Principal Component Analysis Network," Energies, MDPI, vol. 5(11), pages 1-15, November.
    20. Kathleen Spees & Lester Lave, 2008. "Impacts of Responsive Load in PJM: Load Shifting and Real Time Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 101-122.
    21. Agustín A. Sánchez de la Nieta & Virginia González & Javier Contreras, 2016. "Portfolio Decision of Short-Term Electricity Forecasted Prices through Stochastic Programming," Energies, MDPI, vol. 9(12), pages 1-19, December.
    22. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    23. Paul L. Joskow & Catherine D. Wolfram, 2012. "Dynamic Pricing of Electricity," American Economic Review, American Economic Association, vol. 102(3), pages 381-385, May.
    24. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas & Weiss, Jurgen, 2009. "Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects," Energy Economics, Elsevier, vol. 31(2), pages 269-277, March.
    25. Lester Hadsell, Achla Marathe and Hany A. Shawky, 2004. "Estimating the Volatility of Wholesale Electricity Spot Prices in the US," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 23-40.
    26. Egloff, Daniel & Leippold, Markus & Wu, Liuren, 2010. "The Term Structure of Variance Swap Rates and Optimal Variance Swap Investments," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(5), pages 1279-1310, October.
    27. repec:dau:papers:123456789/1433 is not listed on IDEAS
    28. Francis A. Longstaff & Ashley W. Wang, 2004. "Electricity Forward Prices: A High-Frequency Empirical Analysis," Journal of Finance, American Finance Association, vol. 59(4), pages 1877-1900, August.
    29. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    30. Michael A. Crew & Paul R. Kleindorfer, 1976. "Peak Load Pricing with a Diverse Technology," Bell Journal of Economics, The RAND Corporation, vol. 7(1), pages 207-231, Spring.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Renato Fernandes & Isabel Soares, 2022. "Reviewing Explanatory Methodologies of Electricity Markets: An Application to the Iberian Market," Energies, MDPI, vol. 15(14), pages 1-17, July.
    2. Khowaja, Kainat & Shcherbatyy, Mykhaylo & Härdle, Wolfgang Karl, 2021. "Surrogate Models for Optimization of Dynamical Systems," IRTG 1792 Discussion Papers 2021-001, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. Johannes Kaufmann & Philipp Artur Kienscherf & Wolfgang Ketter, 2020. "Modeling and Managing Joint Price and Volumetric Risk for Volatile Electricity Portfolios," Energies, MDPI, vol. 13(14), pages 1-19, July.
    4. Li, Kun & Cursio, Joseph D. & Jiang, Mengfei & Liang, Xi, 2019. "The significance of calendar effects in the electricity market," Applied Energy, Elsevier, vol. 235(C), pages 487-494.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Kun & Cursio, Joseph D. & Jiang, Mengfei & Liang, Xi, 2019. "The significance of calendar effects in the electricity market," Applied Energy, Elsevier, vol. 235(C), pages 487-494.
    2. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    3. Yacine Aït-Sahalia & Dacheng Xiu, 2019. "Principal Component Analysis of High-Frequency Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 287-303, January.
    4. Le Pen, Yannick & Sévi, Benoît, 2010. "Volatility transmission and volatility impulse response functions in European electricity forward markets," Energy Economics, Elsevier, vol. 32(4), pages 758-770, July.
    5. Mayer, Klaus & Trück, Stefan, 2018. "Electricity markets around the world," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 77-100.
    6. Ullrich, Carl J., 2012. "Realized volatility and price spikes in electricity markets: The importance of observation frequency," Energy Economics, Elsevier, vol. 34(6), pages 1809-1818.
    7. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    8. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    9. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    10. repec:gnv:wpaper:unige:76321 is not listed on IDEAS
    11. Necati Tekatli, 2007. "Generalized Factor Models: A Bayesian Approach," Working Papers 334, Barcelona School of Economics.
    12. Smith, Michael Stanley & Shively, Thomas S., 2018. "Econometric modeling of regional electricity spot prices in the Australian market," Energy Economics, Elsevier, vol. 74(C), pages 886-903.
    13. Bowden, Nicholas & Payne, James E., 2008. "Short term forecasting of electricity prices for MISO hubs: Evidence from ARIMA-EGARCH models," Energy Economics, Elsevier, vol. 30(6), pages 3186-3197, November.
    14. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    15. George Daskalakis, Lazaros Symeonidis, Raphael N. Markellos, 2015. "Electricity futures prices in an emissions constrained economy: Evidence from European power markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    16. Zura Kakushadze & Willie Yu, 2016. "Multifactor Risk Models and Heterotic CAPM," Papers 1602.04902, arXiv.org, revised Mar 2016.
    17. Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "Time‐Varying Risk Premium in Large Cross‐Sectional Equity Data Sets," Econometrica, Econometric Society, vol. 84, pages 985-1046, May.
    18. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "Estimation of large dimensional conditional factor models in finance," Working Papers unige:125031, University of Geneva, Geneva School of Economics and Management.
    19. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    20. Dai, Chaoxing & Lu, Kun & Xiu, Dacheng, 2019. "Knowing factors or factor loadings, or neither? Evaluating estimators of large covariance matrices with noisy and asynchronous data," Journal of Econometrics, Elsevier, vol. 208(1), pages 43-79.
    21. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4019-:d:180103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.