IDEAS home Printed from https://ideas.repec.org/p/zbw/irtgdp/2021001.html
   My bibliography  Save this paper

Surrogate Models for Optimization of Dynamical Systems

Author

Listed:
  • Khowaja, Kainat
  • Shcherbatyy, Mykhaylo
  • Härdle, Wolfgang Karl

Abstract

Driven by increased complexity of dynamical systems, the solution of system of differential equations through numerical simulation in optimization problems has become computationally expensive. This paper provides a smart data driven mechanism to construct low dimensional surrogate models. These surrogate models reduce the computational time for solution of the complex optimization problems by using training instances derived from the evaluations of the true objective functions. The surrogate models are constructed using combination of proper orthogonal decomposition and radial basis functions and provides system responses by simple matrix multiplication. Using relative maximum absolute error as the measure of accuracy of approximation, it is shown surrogate models with latin hypercube sampling and spline radial basis functions dominate variable order methods in computational time of optimization, while preserving the accuracy. These surrogate models also show robustness in presence of model non-linearities. Therefore, these computational efficient predictive surrogate models are applicable in various fields, specifically to solve inverse problems and optimal control problems, some examples of which are demonstrated in this paper.

Suggested Citation

  • Khowaja, Kainat & Shcherbatyy, Mykhaylo & Härdle, Wolfgang Karl, 2021. "Surrogate Models for Optimization of Dynamical Systems," IRTG 1792 Discussion Papers 2021-001, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  • Handle: RePEc:zbw:irtgdp:2021001
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/230835/1/irtg1792dp2021-001.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen Ying & Härdle Wolfgang K. & He Qiang & Majer Piotr, 2018. "Risk related brain regions detection and individual risk classification with 3D image FPCA," Statistics & Risk Modeling, De Gruyter, vol. 35(3-4), pages 89-110, July.
    2. Alessandro Maravalle & Łukasz Rawdanowicz, 2018. "Changes in Economic and Financial Synchronisation: A Global Factor Analysis," OECD Economics Department Working Papers 1517, OECD Publishing.
    3. Kun Li & Joseph D. Cursio & Yunchuan Sun, 2018. "Principal Component Analysis of Price Fluctuation in the Smart Grid Electricity Market," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantin Häusler & Hongyu Xia, 2022. "Indices on cryptocurrencies: an evaluation," Digital Finance, Springer, vol. 4(2), pages 149-167, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paitoon Chetthamrongchai & Sudawan Somjai & Thitinan Chankoson, 2020. "The contribution of macroeconomic factors in determining the economic growth, export and the agricultural output in agri-based ASEAN economies," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(3), pages 2043-2059, March.
    2. Li, Kun & Cursio, Joseph D. & Jiang, Mengfei & Liang, Xi, 2019. "The significance of calendar effects in the electricity market," Applied Energy, Elsevier, vol. 235(C), pages 487-494.
    3. Renato Fernandes & Isabel Soares, 2022. "Reviewing Explanatory Methodologies of Electricity Markets: An Application to the Iberian Market," Energies, MDPI, vol. 15(14), pages 1-17, July.
    4. Johannes Kaufmann & Philipp Artur Kienscherf & Wolfgang Ketter, 2020. "Modeling and Managing Joint Price and Volumetric Risk for Volatile Electricity Portfolios," Energies, MDPI, vol. 13(14), pages 1-19, July.

    More about this item

    Keywords

    Proper Orthogonal Decomposition; SVD; Radial Basis Functions; Optimization; Surrogate Models; Smart Data Analytics; Parameter Estimation;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:irtgdp:2021001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/wfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.