IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i17p9040-d623241.html
   My bibliography  Save this article

An Analysis of the Impact of the Emissions Trading System on the Green Total Factor Productivity Based on the Spatial Difference-in-Differences Approach: The Case of China

Author

Listed:
  • Susheng Wang

    (School of Economics and Management, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
    Department of Finance, Southern University of Science and Technology, Shenzhen 518055, China)

  • Gang Chen

    (School of Economics and Management, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China)

  • Xue Han

    (School of Economics and Management, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China)

Abstract

How to effectively identify the spatial effect of the emissions trading system(ETS) on urban green total factor productivity(GTFP) generated through the linkage of economic factors between cities is a necessary part of scientifically evaluating the effect of ETS policy in emerging- market countries. This study aims to examine the spatial effect, mechanism, and heterogeneity of the ETS on urban GTFP based on the panel data of 281 cities from 2004 to 2017 in China, applying spatial difference-in-differences(DID) Durbin model (SDID-SDM) with multidimensional fixed effect (FE). The results show that ETS significantly improves the GTFP of the pilot cities, produces a spatial spillover effect and the results are robust to the placebo test, propensity score matching SDID (PSM-SDID) test, and Carbon-ETS interference test. Further analysis shows that the policy effect is mainly driven by improving energy efficiency, promoting green innovation, and optimizing the industrial structure. In addition, we found that ETS performs better in regions with a high degree of marketization, strong environmental law enforcement, and a low proportion of coal consumption. In general, the identification method of this study can be used as a scientific reference for conducting similar research in other emerging countries.

Suggested Citation

  • Susheng Wang & Gang Chen & Xue Han, 2021. "An Analysis of the Impact of the Emissions Trading System on the Green Total Factor Productivity Based on the Spatial Difference-in-Differences Approach: The Case of China," IJERPH, MDPI, vol. 18(17), pages 1-18, August.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:17:p:9040-:d:623241
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/17/9040/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/17/9040/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Bing & Chen, Xiaolan & Guo, Huanxiu, 2018. "Does central supervision enhance local environmental enforcement? Quasi-experimental evidence from China," Journal of Public Economics, Elsevier, vol. 164(C), pages 70-90.
    2. Cai, Xiqian & Lu, Yi & Wu, Mingqin & Yu, Linhui, 2016. "Does environmental regulation drive away inbound foreign direct investment? Evidence from a quasi-natural experiment in China," Journal of Development Economics, Elsevier, vol. 123(C), pages 73-85.
    3. Shinkuma, Takayoshi & Sugeta, Hajime, 2016. "Tax versus emissions trading scheme in the long run," Journal of Environmental Economics and Management, Elsevier, vol. 75(C), pages 12-24.
    4. Allen, Franklin & Qian, Jun & Qian, Meijun, 2005. "Law, finance, and economic growth in China," Journal of Financial Economics, Elsevier, vol. 77(1), pages 57-116, July.
    5. Sahoo, Nihar R. & Mohapatra, Pratap K.J. & Sahoo, Biresh K. & Mahanty, Biswajit, 2017. "Rationality of energy efficiency improvement targets under the PAT scheme in India – A case of thermal power plants," Energy Economics, Elsevier, vol. 66(C), pages 279-289.
    6. Ming Yi & Xiaomeng Fang & Le Wen & Fengtao Guang & Yao Zhang, 2019. "The Heterogeneous Effects of Different Environmental Policy Instruments on Green Technology Innovation," IJERPH, MDPI, vol. 16(23), pages 1-19, November.
    7. Yao, Shiyue & Yu, Xueying & Yan, Sen & Wen, Shiyan, 2021. "Heterogeneous emission trading schemes and green innovation," Energy Policy, Elsevier, vol. 155(C).
    8. Chen, Shiyi, 2015. "Environmental pollution emissions, regional productivity growth and ecological economic development in China," China Economic Review, Elsevier, vol. 35(C), pages 171-182.
    9. Chan, H. Ron & Chupp, B. Andrew & Cropper, Maureen L. & Muller, Nicholas Z., 2018. "The impact of trading on the costs and benefits of the Acid Rain Program," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 180-209.
    10. Wang, Yun & Sun, Xiaohua & Guo, Xu, 2019. "Environmental regulation and green productivity growth: Empirical evidence on the Porter Hypothesis from OECD industrial sectors," Energy Policy, Elsevier, vol. 132(C), pages 611-619.
    11. Ambec, Stefan & Barla, Philippe, 2002. "A theoretical foundation of the Porter hypothesis," Economics Letters, Elsevier, vol. 75(3), pages 355-360, May.
    12. Yan, Yaxue & Zhang, Xiaoling & Zhang, Jihong & Li, Kai, 2020. "Emissions trading system (ETS) implementation and its collaborative governance effects on air pollution: The China story," Energy Policy, Elsevier, vol. 138(C).
    13. Diniz Oliveira, Thais & Costa Gurgel, Angelo & Tonry, Steve, 2019. "International market mechanisms under the Paris Agreement: A cooperation between Brazil and Europe," Energy Policy, Elsevier, vol. 129(C), pages 397-409.
    14. Cenjie Liu & Chunbo Ma & Rui Xie, 2020. "Structural, Innovation and Efficiency Effects of Environmental Regulation: Evidence from China’s Carbon Emissions Trading Pilot," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 741-768, April.
    15. Yang, Zhenbing & Fan, Meiting & Shao, Shuai & Yang, Lili, 2017. "Does carbon intensity constraint policy improve industrial green production performance in China? A quasi-DID analysis," Energy Economics, Elsevier, vol. 68(C), pages 271-282.
    16. Joskow, Paul L & Schmalensee, Richard, 1998. "The Political Economy of Market-Based Environmental Policy: The U.S. Acid Rain Program," Journal of Law and Economics, University of Chicago Press, vol. 41(1), pages 37-83, April.
    17. Philibert, Cedric, 2000. "How could emissions trading benefit developing countries," Energy Policy, Elsevier, vol. 28(13), pages 947-956, November.
    18. Jiayu Wang & Ke Wang & Xunpeng Shi & Yi-Ming Wei, 2019. "Spatial heterogeneity and driving forces of environmental productivity growth in China: Would it help to switch pollutant discharge fees to environmental taxes?," CEEP-BIT Working Papers 123, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    19. Zhang, Wei & Li, Jing & Li, Guoxiang & Guo, Shucen, 2020. "Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China," Energy, Elsevier, vol. 196(C).
    20. Barreca, Alan I. & Neidell, Matthew & Sanders, Nicholas J., 2021. "Long-run pollution exposure and mortality: Evidence from the Acid Rain Program," Journal of Public Economics, Elsevier, vol. 200(C).
    21. Zhang, Da & Karplus, Valerie J. & Cassisa, Cyril & Zhang, Xiliang, 2014. "Emissions trading in China: Progress and prospects," Energy Policy, Elsevier, vol. 75(C), pages 9-16.
    22. Chen Feng & Beibei Shi & Rong Kang, 2017. "Does Environmental Policy Reduce Enterprise Innovation?—Evidence from China," Sustainability, MDPI, vol. 9(6), pages 1-24, May.
    23. Albrizio, Silvia & Kozluk, Tomasz & Zipperer, Vera, 2017. "Environmental policies and productivity growth: Evidence across industries and firms," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 209-226.
    24. Jacobsen, Lars-Bo & Nielsen, Max & Nielsen, Rasmus, 2016. "Gains of integrating sector-wise pollution regulation: The case of nitrogen in Danish crop production and aquaculture," Ecological Economics, Elsevier, vol. 129(C), pages 172-181.
    25. Joshua Muldavin, 2000. "The Paradoxes of Environmental Policy and Resource Management in Reform-Era China," Economic Geography, Taylor & Francis Journals, vol. 76(3), pages 244-271, July.
    26. Vespermann, Jan & Wald, Andreas, 2011. "Much Ado about Nothing? – An analysis of economic impacts and ecologic effects of the EU-emission trading scheme in the aviation industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1066-1076.
    27. Li, Ye & Chen, Yiyan, 2021. "Development of an SBM-ML model for the measurement of green total factor productivity: The case of pearl river delta urban agglomeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    28. Hu, Yucai & Ren, Shenggang & Wang, Yangjie & Chen, Xiaohong, 2020. "Can carbon emission trading scheme achieve energy conservation and emission reduction? Evidence from the industrial sector in China," Energy Economics, Elsevier, vol. 85(C).
    29. Haakon Vennemo & Kristin Aunan & Henrik Lindhjem & Hans Martin Seip, 2009. "Environmental Pollution in China: Status and Trends," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 3(2), pages 209-230, Summer.
    30. Rogge, Karoline S. & Schneider, Malte & Hoffmann, Volker H., 2011. "The innovation impact of the EU Emission Trading System -- Findings of company case studies in the German power sector," Ecological Economics, Elsevier, vol. 70(3), pages 513-523, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Pan & Yi Yu & Fanbin Kong, 2023. "Quantifying the Effectiveness of Environmental Regulations on Green Total Factor Productivity: Evidence Based on China’s Environmental Protection Interview Program," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    2. Aristide Giuliano & Massimiliano Errico & Hamid Salehi & Pasquale Avino, 2022. "Environmental Impact Assessment by Green Processes," IJERPH, MDPI, vol. 19(23), pages 1-4, November.
    3. Junwu Wang & Yinghui Song & Wei Wang & Suikuan Wang & Feng Guo & Jiequn Lu, 2022. "Marine Construction Waste Recycling Mechanism Considering Public Participation and Carbon Trading: A Study on Dynamic Modeling and Simulation Based on Sustainability Policy," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    4. Junwei Zhao & Yuxiang Zhang & Anhang Chen & Huiqin Zhang, 2022. "Analysis on the Spatio-Temporal Evolution Characteristics of the Impact of China’s Digitalization Process on Green Total Factor Productivity," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    5. Hongge Zhu & Zhenhuan Chen & Shaopeng Zhang & Wencheng Zhao, 2022. "The Role of Government Innovation Support in the Process of Urban Green Sustainable Development: A Spatial Difference-in-Difference Analysis Based on China’s Innovative City Pilot Policy," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    6. Yongcuomu Qu & Ziqiong Zhang & Yanchao Feng & Xiaorong Cui, 2021. "How Do Chinese National Scenic Areas Affect Tourism Economic Development? The Moderating Effect of Time-Limited Rectification," IJERPH, MDPI, vol. 18(21), pages 1-11, November.
    7. Guoteng Xu & Shuai Peng & Chengjiang Li & Xia Chen, 2023. "Synergistic Evolution of China’s Green Economy and Digital Economy Based on LSTM-GM and Grey Absolute Correlation," Sustainability, MDPI, vol. 15(19), pages 1-29, September.
    8. Dawei Huang & Gang Chen, 2022. "Can the Carbon Emissions Trading System Improve the Green Total Factor Productivity of the Pilot Cities?—A Spatial Difference-in-Differences Econometric Analysis in China," IJERPH, MDPI, vol. 19(3), pages 1-18, January.
    9. Xiaoli Hao & Xinhui Wang & Haitao Wu & Yu Hao, 2023. "Path to sustainable development: Does digital economy matter in manufacturing green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 360-378, February.
    10. Li-Yang Guo & Chao Feng, 2022. "Measuring the Demand Connectedness among China’s Regional Carbon Markets," IJERPH, MDPI, vol. 19(21), pages 1-16, October.
    11. Jian Song & Yijing Wang & Jing Wang, 2022. "The Impact of SO 2 Emissions Trading Scheme on Firm’s Environmental Performance: A Channel from Robot Application," IJERPH, MDPI, vol. 19(24), pages 1, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Yucai & Ren, Shenggang & Wang, Yangjie & Chen, Xiaohong, 2020. "Can carbon emission trading scheme achieve energy conservation and emission reduction? Evidence from the industrial sector in China," Energy Economics, Elsevier, vol. 85(C).
    2. Ren, Shenggang & Yang, Xuanyu & Hu, Yucai & Chevallier, Julien, 2022. "Emission trading, induced innovation and firm performance," Energy Economics, Elsevier, vol. 112(C).
    3. Susheng Wang & Gang Chen & Dawei Huang, 2021. "Can the New Energy Vehicle Pilot Policy Achieve Green Innovation and Emission Reduction?—A Difference-in-Differences Analysis on the Evaluation of China’s New Energy Fiscal Subsidy Policy," Sustainability, MDPI, vol. 13(15), pages 1-21, August.
    4. Dawei Huang & Gang Chen, 2022. "Can the Carbon Emissions Trading System Improve the Green Total Factor Productivity of the Pilot Cities?—A Spatial Difference-in-Differences Econometric Analysis in China," IJERPH, MDPI, vol. 19(3), pages 1-18, January.
    5. Ren, Shenggang & Hu, Yucai & Zheng, Jingjing & Wang, Yangjie, 2020. "Emissions trading and firm innovation: Evidence from a natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    6. Maogang Tang & Silu Cheng & Wenqing Guo & Weibiao Ma & Fengxia Hu, 2023. "Relationship between carbon emission trading schemes and companies’ total factor productivity: evidence from listed companies in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11735-11767, October.
    7. Hu, Yucai & Li, Ranran & Du, Lei & Ren, Shenggang & Chevallier, Julien, 2022. "Could SO2 and CO2 emissions trading schemes achieve co-benefits of emissions reduction?," Energy Policy, Elsevier, vol. 170(C).
    8. Yizhang He & Wei Song, 2022. "Analysis of the Impact of Carbon Trading Policies on Carbon Emission and Carbon Emission Efficiency," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    9. Huang, Zhi-xiong & Yang, Xiandong, 2021. "Carbon emissions and firm innovation," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 503-513.
    10. Weng, Zhixiong & Liu, Tingting & Wu, Yufeng & Cheng, Cuiyun, 2022. "Air quality improvement effect and future contributions of carbon trading pilot programs in China," Energy Policy, Elsevier, vol. 170(C).
    11. Yang, Zhenbing & Shi, Qingquan & Lv, Xiangqiu & Shi, Qi, 2022. "Heterogeneous low-carbon targets and energy structure optimization: Does stricter carbon regulation really matter?," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 329-343.
    12. Wu, Rongxin & Tan, Zhizhou & Lin, Boqiang, 2023. "Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China's iron and steel industry," Energy, Elsevier, vol. 277(C).
    13. Xuehui Yang & Jiaping Zhang & Lehua Bi & Yiming Jiang, 2023. "Does China’s Carbon Trading Pilot Policy Reduce Carbon Emissions? Empirical Analysis from 285 Cities," IJERPH, MDPI, vol. 20(5), pages 1-24, March.
    14. Chen, Xing & Lin, Boqiang, 2021. "Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China," Energy Policy, Elsevier, vol. 157(C).
    15. Rui Zhu & Liyu Long & Yinghua Gong, 2022. "Emission Trading System, Carbon Market Efficiency, and Corporate Innovations," IJERPH, MDPI, vol. 19(15), pages 1-22, August.
    16. Zhang, Hua & Xu, Tiantian & Feng, Chao, 2022. "Does public participation promote environmental efficiency? Evidence from a quasi-natural experiment of environmental information disclosure in China," Energy Economics, Elsevier, vol. 108(C).
    17. Du, Gang & Yu, Meng & Sun, Chuanwang & Han, Zhao, 2021. "Green innovation effect of emission trading policy on pilot areas and neighboring areas: An analysis based on the spatial econometric model," Energy Policy, Elsevier, vol. 156(C).
    18. Xiaosheng Li & Yunxia Shu & Xin Jin, 2022. "Environmental regulation, carbon emissions and green total factor productivity: a case study of China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2577-2597, February.
    19. Liu, Duan & Yu, Nizhou & Wan, Hong, 2022. "Does water rights trading affect corporate investment? The role of resource allocation and risk mitigation channels," Economic Modelling, Elsevier, vol. 117(C).
    20. Lin, Boqiang & Zhu, Junpeng, 2019. "Impact of energy saving and emission reduction policy on urban sustainable development: Empirical evidence from China," Applied Energy, Elsevier, vol. 239(C), pages 12-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:17:p:9040-:d:623241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.