IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i15p9683-d881586.html
   My bibliography  Save this article

Emission Trading System, Carbon Market Efficiency, and Corporate Innovations

Author

Listed:
  • Rui Zhu

    (Economics and Management School, Changsha University of Science and Technology, Changsha 410114, China)

  • Liyu Long

    (Economics and Management School, Changsha University of Science and Technology, Changsha 410114, China)

  • Yinghua Gong

    (Shanghai National Accounting Institute, Shanghai 201702, China)

Abstract

Taking China’s emission trading system (ETS) pilot in 2013 as a quasi-natural experiment, this paper uses the difference-in-differences (DID) models to study whether the regional pilot ETS can promote technological innovation in enterprises. In addition, this paper examines the influence mechanism of the ETS innovation effect, with a focus on three key dimensions of the carbon market efficiency: market price effectiveness, market product diversity, and market order normativity. The results show that the pilot ETS has significantly promoted the technological innovation of regulated enterprises, specifically, 1.405*** for the total R&D investment, and 2.783*** for the number of patent applications. Moreover, the regional carbon price has a positive moderating effect on the innovation effect of ETS. Meanwhile, the innovation effect is more significant when the gap between the carbon price and the marginal abatement cost (MAC) of CO 2 is smaller, when the carbon financial derivatives are more abundant, or when the local market supervision is stronger. This study provides empirical evidence for the improvement of the national unified market and provides useful policy implications for developing countries to design ETS suitable for their national conditions.

Suggested Citation

  • Rui Zhu & Liyu Long & Yinghua Gong, 2022. "Emission Trading System, Carbon Market Efficiency, and Corporate Innovations," IJERPH, MDPI, vol. 19(15), pages 1-22, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:9683-:d:881586
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/15/9683/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/15/9683/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Natalia Davidson & Oleg Mariev & Sophia Turkanova, 2021. "Does income inequality matter for CO2 emissions in Russian regions?," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 16(3), pages 533-551, September.
    2. Satoshi Kojima & Kenji Asakawa, 2021. "Expectations for Carbon Pricing in Japan in the Global Climate Policy Context," Economics, Law, and Institutions in Asia Pacific, in: Toshi H. Arimura & Shigeru Matsumoto (ed.), Carbon Pricing in Japan, chapter 0, pages 1-21, Springer.
    3. Roland Bénabou & Jean Tirole, 2010. "Individual and Corporate Social Responsibility," Economica, London School of Economics and Political Science, vol. 77(305), pages 1-19, January.
    4. Ang, James B., 2009. "CO2 emissions, research and technology transfer in China," Ecological Economics, Elsevier, vol. 68(10), pages 2658-2665, August.
    5. Yao, Shiyue & Yu, Xueying & Yan, Sen & Wen, Shiyan, 2021. "Heterogeneous emission trading schemes and green innovation," Energy Policy, Elsevier, vol. 155(C).
    6. Kalaitzoglou, Iordanis Angelos & Ibrahim, Boulis Maher, 2015. "Liquidity and resolution of uncertainty in the European carbon futures market," International Review of Financial Analysis, Elsevier, vol. 37(C), pages 89-102.
    7. Eugenia Sanin, María & Violante, Francesco & Mansanet-Bataller, María, 2015. "Understanding volatility dynamics in the EU-ETS market," Energy Policy, Elsevier, vol. 82(C), pages 321-331.
    8. Bu, Maoliang & Qiao, Zhenzi & Liu, Beibei, 2020. "Voluntary environmental regulation and firm innovation in China," Economic Modelling, Elsevier, vol. 89(C), pages 10-18.
    9. Brunnermeier, Smita B. & Cohen, Mark A., 2003. "Determinants of environmental innovation in US manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 278-293, March.
    10. Zhang, Wei & Li, Jing & Li, Guoxiang & Guo, Shucen, 2020. "Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China," Energy, Elsevier, vol. 196(C).
    11. Na Liu & Futie Song, 2021. "Marginal Abatement Cost of Carbon Emissions under Different Shared Socioeconomic Pathways," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    12. Xu, Li & Deng, Shi-Jie & Thomas, Valerie M., 2016. "Carbon emission permit price volatility reduction through financial options," Energy Economics, Elsevier, vol. 53(C), pages 248-260.
    13. Chen, Zhongfei & Zhang, Xiao & Chen, Fanglin, 2021. "Do carbon emission trading schemes stimulate green innovation in enterprises? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    14. Junming Zhu & Yichun Fan & Xinghua Deng & Lan Xue, 2019. "Low-carbon innovation induced by emissions trading in China," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    15. Rittler, Daniel, 2012. "Price discovery and volatility spillovers in the European Union emissions trading scheme: A high-frequency analysis," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 774-785.
    16. Jacobsen, Lars-Bo & Nielsen, Max & Nielsen, Rasmus, 2016. "Gains of integrating sector-wise pollution regulation: The case of nitrogen in Danish crop production and aquaculture," Ecological Economics, Elsevier, vol. 129(C), pages 172-181.
    17. Hu, Yucai & Ren, Shenggang & Wang, Yangjie & Chen, Xiaohong, 2020. "Can carbon emission trading scheme achieve energy conservation and emission reduction? Evidence from the industrial sector in China," Energy Economics, Elsevier, vol. 85(C).
    18. Chang-Jing Ji & Yu-Jie Hu & Bao-Jun Tang, 2018. "Research on carbon market price mechanism and influencing factors: a literature review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 761-782, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao Cheng, 2022. "Carbon Derivatives-Directed International Supervision Laws and Regulations and Carbon Market Mechanism," Sustainability, MDPI, vol. 14(23), pages 1-13, December.
    2. Rui Zhu & Mengting Liu & Liyu Long & Congjia Huo, 2022. "Environmental Regulation, Political Connections, and Corporate Green Investment," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    3. Deng, Haiyan & Zhang, Wenjia & Liu, Dan, 2023. "Does carbon emission trading system induce enterprises’ green innovation?," Journal of Asian Economics, Elsevier, vol. 86(C).
    4. Shaolong Zeng & Qinyi Fu & Danni Yang & Yihua Tian & Yang Yu, 2023. "The Influencing Factors of the Carbon Trading Price: A Case of China against a “Double Carbon” Background," Sustainability, MDPI, vol. 15(3), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susheng Wang & Gang Chen & Xue Han, 2021. "An Analysis of the Impact of the Emissions Trading System on the Green Total Factor Productivity Based on the Spatial Difference-in-Differences Approach: The Case of China," IJERPH, MDPI, vol. 18(17), pages 1-18, August.
    2. Chen, Zhongfei & Zhang, Xiao & Chen, Fanglin, 2021. "Do carbon emission trading schemes stimulate green innovation in enterprises? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    3. Zhou, Fengxiu & Wang, Xiaoyu, 2022. "The carbon emissions trading scheme and green technology innovation in China: A new structural economics perspective," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 365-381.
    4. Jin, Chenfei & Tsai, Fu-Sheng & Gu, Qiuyang & Wu, Bao, 2022. "Does the porter hypothesis work well in the emission trading schema pilot? Exploring moderating effects of institutional settings," Research in International Business and Finance, Elsevier, vol. 62(C).
    5. Ying Zhang & Yingli Huang, 2023. "Killing Two Birds with One Stone or Missing One of Them? The Synergistic Governance Effect of China’s Carbon Emissions Trading Scheme on Pollution Control and Carbon Emission Reduction," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
    6. Wu, Qingyang & Wang, Yanying, 2022. "How does carbon emission price stimulate enterprises' total factor productivity? Insights from China's emission trading scheme pilots," Energy Economics, Elsevier, vol. 109(C).
    7. Yan Xiao & Yan Zhang & Jiekuan Zhang, 2023. "The Impact of Carbon Emission Trading on Industrial Green Total Factor Productivity," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    8. Weng, Zhixiong & Liu, Tingting & Wu, Yufeng & Cheng, Cuiyun, 2022. "Air quality improvement effect and future contributions of carbon trading pilot programs in China," Energy Policy, Elsevier, vol. 170(C).
    9. Yan, Kai & Zhang, Wei & Shen, Dehua, 2020. "Stylized facts of the carbon emission market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    10. Wu, Jianxian & Nie, Xin & Wang, Han & Li, Weijuan, 2023. "Eco-industrial parks and green technological progress: Evidence from Chinese cities," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    11. Deng, Haiyan & Zhang, Wenjia & Liu, Dan, 2023. "Does carbon emission trading system induce enterprises’ green innovation?," Journal of Asian Economics, Elsevier, vol. 86(C).
    12. Gao, Kang & Yuan, Yijun, 2021. "The effect of innovation-driven development on pollution reduction: Empirical evidence from a quasi-natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    13. Du, Gang & Yu, Meng & Sun, Chuanwang & Han, Zhao, 2021. "Green innovation effect of emission trading policy on pilot areas and neighboring areas: An analysis based on the spatial econometric model," Energy Policy, Elsevier, vol. 156(C).
    14. Dawei Huang & Gang Chen, 2022. "Can the Carbon Emissions Trading System Improve the Green Total Factor Productivity of the Pilot Cities?—A Spatial Difference-in-Differences Econometric Analysis in China," IJERPH, MDPI, vol. 19(3), pages 1-18, January.
    15. Wanli Zhang & Bin Zhu & Yongling Li & Dan Yan, 2024. "Revisiting the Porter hypothesis: a multi-country meta-analysis of the relationship between environmental regulation and green innovation," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    16. Qiuyue Xia & Lu Li & Jie Dong & Bin Zhang, 2021. "Reduction Effect and Mechanism Analysis of Carbon Trading Policy on Carbon Emissions from Land Use," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    17. Hu, Hui & Qi, Shaozhou & Chen, Yuanzhi, 2023. "Using green technology for a better tomorrow: How enterprises and government utilize the carbon trading system and incentive policies," China Economic Review, Elsevier, vol. 78(C).
    18. Hao, Miao & Lyv, Kangjuan & Li, Shiyuan & Hu, Wuyang, 2021. "How does environmental regulation affect firm innovation? Evidence based on corporate life cycle," MPRA Paper 110971, University Library of Munich, Germany.
    19. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    20. Xiaoqi Li & Dingfei Guo & Chao Feng, 2022. "The Carbon Emissions Trading Policy of China: Does It Really Promote the Enterprises’ Green Technology Innovations?," IJERPH, MDPI, vol. 19(21), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:9683-:d:881586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.