IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i3p1209-d730776.html
   My bibliography  Save this article

Can the Carbon Emissions Trading System Improve the Green Total Factor Productivity of the Pilot Cities?—A Spatial Difference-in-Differences Econometric Analysis in China

Author

Listed:
  • Dawei Huang

    (School of Management, Shenzhen Polytechnic, Shenzhen 518055, China
    School of Economics and Management, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China)

  • Gang Chen

    (School of Economics and Management, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China)

Abstract

The carbon emission trading system (CETS) is an important market-oriented policy tool for the Chinese government to solve the problem of high emissions and achieve the growth of green total factor productivity (GTFP). This study makes up for the neglect of the spatial effect of CETS policy in previous studies and adopts the spatial difference-in-differences (DID) Durbin model (SDID-SDM) method of two-way fixed effects to scientifically identify the direct and spatial effects influencing the mechanisms and heterogeneity of CETS on urban GTFP based on the panel data of 281 cities in China from 2004 to 2017. It found that China’s CETS significantly improved the GTFP of pilot cities but produced a negative spatial siphon effect that restricted the growth of GTFP in surrounding cities. Benchmark results are robust under the placebo test, the propensity score matching SDID (PSM-SDID) test, and the difference-in difference-in-differences (DDD) test. The mechanism analysis shows that the CETS effect is mainly realized by improving energy efficiency, promoting low-carbon innovation, adjusting the industrial structure, and enhancing financial agglomeration. In addition, we find that policy effects are better in cities with high marketization, strong monitoring reporting and verification (MRV) capabilities, high coal endowment, and high financial endowment. Overall, China’s CETS policy achieves the goal of enhancing GTFP but needs to pay attention to the spatial siphon effect. In addition, our estimation strategy can serve as a scientific reference for similar studies in other developing countries.

Suggested Citation

  • Dawei Huang & Gang Chen, 2022. "Can the Carbon Emissions Trading System Improve the Green Total Factor Productivity of the Pilot Cities?—A Spatial Difference-in-Differences Econometric Analysis in China," IJERPH, MDPI, vol. 19(3), pages 1-18, January.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:3:p:1209-:d:730776
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/3/1209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/3/1209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Candau, Fabien & Dienesch, Elisa, 2017. "Pollution Haven and Corruption Paradise," Journal of Environmental Economics and Management, Elsevier, vol. 85(C), pages 171-192.
    2. Wu, Peng & Jin, Ying & Shi, Yongjiang & Shyu, Hawfeng, 2017. "The impact of carbon emission costs on manufacturers' production and location decision," International Journal of Production Economics, Elsevier, vol. 193(C), pages 193-206.
    3. Toshi H. Arimura & Tatsuya Abe, 2021. "The impact of the Tokyo emissions trading scheme on office buildings: what factor contributed to the emission reduction?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(3), pages 517-533, July.
    4. Murray, Brian C. & Maniloff, Peter T., 2015. "Why have greenhouse emissions in RGGI states declined? An econometric attribution to economic, energy market, and policy factors," Energy Economics, Elsevier, vol. 51(C), pages 581-589.
    5. Seyi Saint Akadiri & Festus Victor Bekun & Elham Taheri & Ada Chigozie Akadiri, 2019. "Carbon emissions, energy consumption and economic growth: a causality evidence," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 15(2/3), pages 320-336.
    6. Zhuo Qiao & Zhaohua Li, 2019. "Do foreign institutional investors enhance firm innovation in China?," Applied Economics Letters, Taylor & Francis Journals, vol. 26(13), pages 1125-1128, July.
    7. Yao, Shiyue & Yu, Xueying & Yan, Sen & Wen, Shiyan, 2021. "Heterogeneous emission trading schemes and green innovation," Energy Policy, Elsevier, vol. 155(C).
    8. Shao, Ling & Li, Yuan & Feng, Kuishuang & Meng, Jing & Shan, Yuli & Guan, Dabo, 2018. "Carbon emission imbalances and the structural paths of Chinese regions," Applied Energy, Elsevier, vol. 215(C), pages 396-404.
    9. Zhu, Bangzhu & Zhang, Mengfan & Huang, Liqing & Wang, Ping & Su, Bin & Wei, Yi-Ming, 2020. "Exploring the effect of carbon trading mechanism on China's green development efficiency: A novel integrated approach," Energy Economics, Elsevier, vol. 85(C).
    10. Wang, Yun & Sun, Xiaohua & Guo, Xu, 2019. "Environmental regulation and green productivity growth: Empirical evidence on the Porter Hypothesis from OECD industrial sectors," Energy Policy, Elsevier, vol. 132(C), pages 611-619.
    11. Dai, Hancheng & Xie, Yang & Liu, Jingyu & Masui, Toshihiko, 2018. "Aligning renewable energy targets with carbon emissions trading to achieve China's INDCs: A general equilibrium assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4121-4131.
    12. Zhang, Shengling & Wang, Yao & Hao, Yu & Liu, Zhiwei, 2021. "Shooting two hawks with one arrow: Could China's emission trading scheme promote green development efficiency and regional carbon equality?," Energy Economics, Elsevier, vol. 101(C).
    13. Cenjie Liu & Chunbo Ma & Rui Xie, 2020. "Structural, Innovation and Efficiency Effects of Environmental Regulation: Evidence from China’s Carbon Emissions Trading Pilot," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 741-768, April.
    14. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    15. Yang, Zhenbing & Fan, Meiting & Shao, Shuai & Yang, Lili, 2017. "Does carbon intensity constraint policy improve industrial green production performance in China? A quasi-DID analysis," Energy Economics, Elsevier, vol. 68(C), pages 271-282.
    16. Susheng Wang & Gang Chen & Xue Han, 2021. "An Analysis of the Impact of the Emissions Trading System on the Green Total Factor Productivity Based on the Spatial Difference-in-Differences Approach: The Case of China," IJERPH, MDPI, vol. 18(17), pages 1-18, August.
    17. Easwaran Narassimhan & Kelly S. Gallagher & Stefan Koester & Julio Rivera Alejo, 2018. "Carbon pricing in practice: a review of existing emissions trading systems," Climate Policy, Taylor & Francis Journals, vol. 18(8), pages 967-991, September.
    18. Gao, Yuning & Li, Meng & Xue, Jinjun & Liu, Yu, 2020. "Evaluation of effectiveness of China's carbon emissions trading scheme in carbon mitigation," Energy Economics, Elsevier, vol. 90(C).
    19. Susheng Wang & Gang Chen & Dawei Huang, 2021. "Can the New Energy Vehicle Pilot Policy Achieve Green Innovation and Emission Reduction?—A Difference-in-Differences Analysis on the Evaluation of China’s New Energy Fiscal Subsidy Policy," Sustainability, MDPI, vol. 13(15), pages 1-21, August.
    20. Brian C. Murray & Peter T. Maniloff & Evan M. Murray, 2015. "Why Have Greenhouse Emissions in RGGI States Declined? An Econometric Attribution to Economic, Energy Market and Policy Factors (Payne Institute Policy Brief)," Payne Institute Policy Briefs 2014-04, Colorado School of Mines, Division of Economics and Business.
    21. Junming Zhu & Yichun Fan & Xinghua Deng & Lan Xue, 2019. "Low-carbon innovation induced by emissions trading in China," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    22. Christian Flachsland & Michael Pahle & Dallas Burtraw & Ottmar Edenhofer & Milan Elkerbout & Carolyn Fischer & Oliver Tietjen & Lars Zetterberg, 2020. "How to avoid history repeating itself: the case for an EU Emissions Trading System (EU ETS) price floor revisited," Climate Policy, Taylor & Francis Journals, vol. 20(1), pages 133-142, January.
    23. Lambert Schneider & Stephanie La Hoz Theuer, 2019. "Environmental integrity of international carbon market mechanisms under the Paris Agreement," Climate Policy, Taylor & Francis Journals, vol. 19(3), pages 386-400, March.
    24. Chan, Nathan W. & Morrow, John W., 2019. "Unintended consequences of cap-and-trade? Evidence from the Regional Greenhouse Gas Initiative," Energy Economics, Elsevier, vol. 80(C), pages 411-422.
    25. Li, Ye & Chen, Yiyan, 2021. "Development of an SBM-ML model for the measurement of green total factor productivity: The case of pearl river delta urban agglomeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    26. Hu, Yucai & Ren, Shenggang & Wang, Yangjie & Chen, Xiaohong, 2020. "Can carbon emission trading scheme achieve energy conservation and emission reduction? Evidence from the industrial sector in China," Energy Economics, Elsevier, vol. 85(C).
    27. Xie, Rui & Fu, Wei & Yao, Siling & Zhang, Qi, 2021. "Effects of financial agglomeration on green total factor productivity in Chinese cities: Insights from an empirical spatial Durbin model," Energy Economics, Elsevier, vol. 101(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Chien-Chiang & Feng, Yi & Peng, Diyun, 2022. "A green path towards sustainable development: The impact of low-carbon city pilot on energy transition," Energy Economics, Elsevier, vol. 115(C).
    2. Tianshu Quan & Tianli Quan, 2023. "A Study of the Spatial Mechanism of Financial Agglomeration Affecting Green Low-Carbon Development: Evidence from China," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    3. Jichao Geng & Meiyu Ji & Li Yang, 2022. "Role of Enterprise Alliance in Carbon Emission Reduction Mechanism: An Evolutionary Game Analysis," IJERPH, MDPI, vol. 19(18), pages 1-17, September.
    4. Chai, Jian & Tian, Lingyue & Jia, Ruining, 2023. "New energy demonstration city, spatial spillover and carbon emission efficiency: Evidence from China's quasi-natural experiment," Energy Policy, Elsevier, vol. 173(C).
    5. Hongge Zhu & Zhenhuan Chen & Shaopeng Zhang & Wencheng Zhao, 2022. "The Role of Government Innovation Support in the Process of Urban Green Sustainable Development: A Spatial Difference-in-Difference Analysis Based on China’s Innovative City Pilot Policy," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    6. Zhuohui Yu & Shiping Mao & Qingning Lin, 2022. "Has China’s Carbon Emissions Trading Pilot Policy Improved Agricultural Green Total Factor Productivity?," Agriculture, MDPI, vol. 12(9), pages 1-21, September.
    7. Mingxia Shi & Yibo Wang, 2023. "Do Green Transfer Payments Contribute to Carbon Emission Reduction?," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
    8. Kangjuan Lv & Jiaqi Li & Ye Zhao, 2023. "Can Internet Construction Promote Urban Green Development? A Quasi-Natural Experiment from the “Broadband China”," IJERPH, MDPI, vol. 20(6), pages 1-21, March.
    9. Feng Liu & Yu Fu & Weiguo Wang, 2023. "Heterogeneous Effects of China’s Carbon Market on Carbon Emissions—Evidence from a Regression Control Method," Sustainability, MDPI, vol. 16(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susheng Wang & Gang Chen & Xue Han, 2021. "An Analysis of the Impact of the Emissions Trading System on the Green Total Factor Productivity Based on the Spatial Difference-in-Differences Approach: The Case of China," IJERPH, MDPI, vol. 18(17), pages 1-18, August.
    2. Zhang, Yue-Jun & Cheng, Hao-Sen, 2021. "The impact mechanism of the ETS on CO2 emissions from the service sector: Evidence from Beijing and Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    3. Abe, Tatsuya & Arimura, Toshi H., 2022. "Causal effects of the Tokyo emissions trading scheme on energy consumption and economic performance," Energy Policy, Elsevier, vol. 168(C).
    4. Wu, Qingyang & Wang, Yanying, 2022. "How does carbon emission price stimulate enterprises' total factor productivity? Insights from China's emission trading scheme pilots," Energy Economics, Elsevier, vol. 109(C).
    5. Wu, Rongxin & Tan, Zhizhou & Lin, Boqiang, 2023. "Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China's iron and steel industry," Energy, Elsevier, vol. 277(C).
    6. Chen, Zhongfei & Zhang, Xiao & Chen, Fanglin, 2021. "Do carbon emission trading schemes stimulate green innovation in enterprises? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    7. Liu, Jing-Yue & Zhang, Yue-Jun, 2021. "Has carbon emissions trading system promoted non-fossil energy development in China?," Applied Energy, Elsevier, vol. 302(C).
    8. Hu, Yucai & Li, Ranran & Du, Lei & Ren, Shenggang & Chevallier, Julien, 2022. "Could SO2 and CO2 emissions trading schemes achieve co-benefits of emissions reduction?," Energy Policy, Elsevier, vol. 170(C).
    9. Chen, Xing & Lin, Boqiang, 2021. "Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China," Energy Policy, Elsevier, vol. 157(C).
    10. Sadayuki, Taisuke & Arimura, Toshi H., 2021. "Do regional emission trading schemes lead to carbon leakage within firms? Evidence from Japan," Energy Economics, Elsevier, vol. 104(C).
    11. Zhou, Anhua & Xin, Ling & Li, Jun, 2022. "Assessing the impact of the carbon market on the improvement of China's energy and carbon emission performance," Energy, Elsevier, vol. 258(C).
    12. Ren, Shenggang & Yang, Xuanyu & Hu, Yucai & Chevallier, Julien, 2022. "Emission trading, induced innovation and firm performance," Energy Economics, Elsevier, vol. 112(C).
    13. Li, Changsheng & Qi, Yaping & Liu, Shaohui & Wang, Xu, 2022. "Do carbon ETS pilots improve cities' green total factor productivity? Evidence from a quasi-natural experiment in China," Energy Economics, Elsevier, vol. 108(C).
    14. Xiaosheng Li & Yunxia Shu & Xin Jin, 2022. "Environmental regulation, carbon emissions and green total factor productivity: a case study of China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2577-2597, February.
    15. Guang Chen & Akira Hibiki, 2022. "Can the Carbon Emission Trading Scheme Influence Industrial Green Production in China?," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    16. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    17. Mitsutsugu Hamamoto, 2019. "Impact of the Saitama Prefecture Target-Setting Emissions Trading Program on the Adoption of Low-Carbon Technology," RIEEM Discussion Paper Series 1909, Research Institute for Environmental Economics and Management, Waseda University.
    18. Yu, Zhongjue & Geng, Yong & Calzadilla, Alvaro & Bleischwitz, Raimund, 2022. "China's unconventional carbon emissions trading market: The impact of a rate-based cap in the power generation sector," Energy, Elsevier, vol. 255(C).
    19. Chunhua Lu & Hong Li, 2023. "Have China’s Regional Carbon Emissions Trading Schemes Promoted Industrial Resource Allocation Efficiency? The Evidence from Heavily Polluted Industries at the Provincial Level," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    20. Gu, Guangtong & Zheng, Haorong & Tong, Lingyun & Dai, Yaxian, 2022. "Does carbon financial market as an environmental regulation policy tool promote regional energy conservation and emission reduction? Empirical evidence from China," Energy Policy, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:3:p:1209-:d:730776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.