IDEAS home Printed from https://ideas.repec.org/a/spr/envpol/v23y2021i3d10.1007_s10018-020-00271-w.html
   My bibliography  Save this article

The impact of the Tokyo emissions trading scheme on office buildings: what factor contributed to the emission reduction?

Author

Listed:
  • Toshi H. Arimura

    (Waseda University
    Waseda University)

  • Tatsuya Abe

    (Waseda University
    Waseda University)

Abstract

Tokyo ETS is the first emissions trading scheme to control GHG emissions from office buildings. Although the Tokyo government claimed that Tokyo ETS had been successful, some argued that the emission reduction under Tokyo ETS was actually the result of electricity price increases triggered by the Great East Japan Earthquake in 2011. Using a facility-level data set for Japanese office buildings, we conducted an econometric analysis to examine the impact of Tokyo ETS. We found that half of the emission reduction is a result of the ETS, while the rest of the reduction is due to the electricity price increase. Another unique feature of Tokyo ETS is that an accurate permit price is not publicly available due to its design. Using our estimated model, we found that the price is approximately $50 per ton of CO2 in the early phase.

Suggested Citation

  • Toshi H. Arimura & Tatsuya Abe, 2021. "The impact of the Tokyo emissions trading scheme on office buildings: what factor contributed to the emission reduction?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(3), pages 517-533, July.
  • Handle: RePEc:spr:envpol:v:23:y:2021:i:3:d:10.1007_s10018-020-00271-w
    DOI: 10.1007/s10018-020-00271-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10018-020-00271-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10018-020-00271-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ralf Martin & Mirabelle Muûls & Ulrich J. Wagner, 2016. "The Impact of the European Union Emissions Trading Scheme on Regulated Firms: What Is the Evidence after Ten Years?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 129-148.
    2. Petrick, Sebastian & Wagner, Ulrich J., 2014. "The impact of carbon trading on industry: Evidence from German manufacturing firms," Kiel Working Papers 1912, Kiel Institute for the World Economy (IfW Kiel).
    3. Toshi H. Arimura & Kazuyuki Iwata, 2015. "An Evaluation of Japanese Environmental Regulations," Springer Books, Springer, edition 127, number 978-94-017-9947-8, September.
    4. Brian C. Murray & Peter T. Maniloff & Evan M. Murray, 2015. "Why Have Greenhouse Emissions in RGGI States Declined? An Econometric Attribution to Economic, Energy Market and Policy Factors (Payne Institute Policy Brief)," Payne Institute Policy Briefs 2014-04, Colorado School of Mines, Division of Economics and Business.
    5. Masayo Wakabayashi & Osamu Kimura, 2018. "The impact of the Tokyo Metropolitan Emissions Trading Scheme on reducing greenhouse gas emissions: findings from a facility-based study," Climate Policy, Taylor & Francis Journals, vol. 18(8), pages 1028-1043, September.
    6. World Bank Group, "undated". "State and Trends of Carbon Pricing 2019," World Bank Publications - Reports 31755, The World Bank Group.
    7. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    8. Barry Anderson & Corrado Di Maria, 2011. "Abatement and Allocation in the Pilot Phase of the EU ETS," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(1), pages 83-103, January.
    9. Murray, Brian C. & Maniloff, Peter T., 2015. "Why have greenhouse emissions in RGGI states declined? An econometric attribution to economic, energy market, and policy factors," Energy Economics, Elsevier, vol. 51(C), pages 581-589.
    10. Hosoe, Nobuhiro & Akiyama, Shu-ichi, 2009. "Regional electric power demand elasticities of Japan's industrial and commercial sectors," Energy Policy, Elsevier, vol. 37(11), pages 4313-4319, November.
    11. Christoph Böhringer & Andreas Lange, 2005. "Economic Implications of Alternative Allocation Schemes for Emission Allowances," Scandinavian Journal of Economics, Wiley Blackwell, vol. 107(3), pages 563-581, September.
    12. Hitomi Roppongi & Aki Suwa & Jose A. Puppim De Oliveira, 2017. "Innovating in sub-national climate policy: the mandatory emissions reduction scheme in Tokyo," Climate Policy, Taylor & Francis Journals, vol. 17(4), pages 516-532, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawei Huang & Gang Chen, 2022. "Can the Carbon Emissions Trading System Improve the Green Total Factor Productivity of the Pilot Cities?—A Spatial Difference-in-Differences Econometric Analysis in China," IJERPH, MDPI, vol. 19(3), pages 1-18, January.
    2. Yuuki Yoshimoto & Koki Kishimoto & Kanchan Kumar Sen & Takako Mochida & Andrew Chapman, 2023. "Toward Economically Efficient Carbon Reduction: Contrasting Greening Plastic Supply Chains with Alternative Energy Policy Approaches," Sustainability, MDPI, vol. 15(17), pages 1-19, September.
    3. Lu, Guanyu & Sugino, Makoto & Arimura, Toshi H. & Horie, Tetsuya, 2022. "Success and failure of the voluntary action plan: Disaggregated sector decomposition analysis of energy-related CO2 emissions in Japan," Energy Policy, Elsevier, vol. 163(C).
    4. Dries Couckuyt & Toshi H. Arimura & Takuro Miyamoto & Naonari Yajima, 2023. "Green Policymaking in Japanese Municipalities: An Empirical Study on External and Internal Contextual Factors," Sustainability, MDPI, vol. 15(9), pages 1-26, April.
    5. Sadayuki, Taisuke & Arimura, Toshi H., 2021. "Do regional emission trading schemes lead to carbon leakage within firms? Evidence from Japan," Energy Economics, Elsevier, vol. 104(C).
    6. Lurdes Jesus Ferreira & Luís Pereira Dias & Jieling Liu, 2022. "Adopting Carbon Pricing Tools at the Local Level: A City Case Study in Portugal," Sustainability, MDPI, vol. 14(3), pages 1-20, February.
    7. Shiro Takeda & Toshi H. Arimura, 2020. "A Computable General Equilibrium Analysis of Environmental Tax Reform in Japan," RIEEM Discussion Paper Series 2002, Research Institute for Environmental Economics and Management, Waseda University.
    8. Mitsutsugu Hamamoto, 2021. "Impact of the Saitama Prefecture Target-Setting Emissions Trading Program on the adoption of low-carbon technology," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(3), pages 501-515, July.
    9. Satoshi Nakano & Ayu Washizu, 2021. "Analysis of inter-regional effects caused by the wide-area operation of the power grid in Japan: an implication for carbon pricing schemes," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(3), pages 535-556, July.
    10. Abe, Tatsuya & Arimura, Toshi H., 2022. "Causal effects of the Tokyo emissions trading scheme on energy consumption and economic performance," Energy Policy, Elsevier, vol. 168(C).
    11. Mitsutsugu Hamamoto, 2019. "Impact of the Saitama Prefecture Target-Setting Emissions Trading Program on the Adoption of Low-Carbon Technology," RIEEM Discussion Paper Series 1909, Research Institute for Environmental Economics and Management, Waseda University.
    12. Fernando Mata & Meirielly Santos Jesus & Concha Cano-Díaz & Maria Dos-Santos, 2023. "European Citizens’ Worries and Self-Responsibility towards Climate Change," Sustainability, MDPI, vol. 15(8), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadayuki, Taisuke & Arimura, Toshi H., 2021. "Do regional emission trading schemes lead to carbon leakage within firms? Evidence from Japan," Energy Economics, Elsevier, vol. 104(C).
    2. Mitsutsugu Hamamoto, 2019. "Impact of the Saitama Prefecture Target-Setting Emissions Trading Program on the Adoption of Low-Carbon Technology," RIEEM Discussion Paper Series 1909, Research Institute for Environmental Economics and Management, Waseda University.
    3. Mitsutsugu Hamamoto, 2021. "Impact of the Saitama Prefecture Target-Setting Emissions Trading Program on the adoption of low-carbon technology," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(3), pages 501-515, July.
    4. Marit Klemetsen & Knut Einar Rosendahl & Anja Lund Jakobsen, 2020. "The Impacts Of The Eu Ets On Norwegian Plants’ Environmental And Economic Performance," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-32, February.
    5. Benedikt Downar & Jürgen Ernstberger & Stefan Reichelstein & Sebastian Schwenen & Aleksandar Zaklan, 2021. "The impact of carbon disclosure mandates on emissions and financial operating performance," Review of Accounting Studies, Springer, vol. 26(3), pages 1137-1175, September.
    6. Dechezleprêtre, Antoine & Nachtigall, Daniel & Venmans, Frank, 2023. "The joint impact of the European Union emissions trading system on carbon emissions and economic performance," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    7. Chunhua Lu & Hong Li, 2023. "Have China’s Regional Carbon Emissions Trading Schemes Promoted Industrial Resource Allocation Efficiency? The Evidence from Heavily Polluted Industries at the Provincial Level," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    8. Benedikt Downar & Jürgen Ernstberger & Hannes Rettenbacher & Sebastian Schwenen & Aleksandar Zaklan, 2019. "Fighting Climate Change with Disclosure? The Real Effects of Mandatory Greenhouse Gas Emission Disclosure," Discussion Papers of DIW Berlin 1795, DIW Berlin, German Institute for Economic Research.
    9. Joltreau, Eugénie & Sommerfeld, Katrin, 2016. "Why does emissions trading under the EU ETS not affect firms' competitiveness? Empirical findings from the literature," ZEW Discussion Papers 16-062, ZEW - Leibniz Centre for European Economic Research.
    10. Toshi H. Arimura & Maosheng Duan & Hyungna Oh, 2021. "EEPS special issue on “Carbon Pricing in East Asia”," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(3), pages 495-500, July.
    11. Jonathan Colmer & Ralf Martin & Mirabelle Muûls & Ulrich J. Wagner, 2020. "Does pricing carbon mitigate climate change? Firm-level evidence from the European Union emissions trading scheme," CEP Discussion Papers dp1728, Centre for Economic Performance, LSE.
    12. Löschel, Andreas & Lutz, Benjamin Johannes & Managi, Shunsuke, 2019. "The impacts of the EU ETS on efficiency and economic performance – An empirical analyses for German manufacturing firms," Resource and Energy Economics, Elsevier, vol. 56(C), pages 71-95.
    13. Nitish Gupta & Ruchir Kaul & Satwik Gupta & Jay Shah, 2021. "Study Of German Manufacturing Firms: Causal Impact Of European Union Emission Trading Scheme On Firm Behaviour And Economic Performance," Papers 2108.07116, arXiv.org.
    14. Simone Lazzini & Zeila Occhipinti & Angela Parenti & Roberto Verona, 2021. "Disentangling economic crisis effects from environmental regulation effects: Implications for sustainable development," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2332-2353, July.
    15. Lu, Yunguo & Zhang, Lin, 2022. "National mitigation policy and the competitiveness of Chinese firms," Energy Economics, Elsevier, vol. 109(C).
    16. Emanuel Kohlscheen & Richhild Moessner & Elod Takáts, 2021. "Effects of Carbon Pricing and Other Climate Policies on CO2 Emissions," CESifo Working Paper Series 9347, CESifo.
    17. Abe, Tatsuya & Arimura, Toshi H., 2022. "Causal effects of the Tokyo emissions trading scheme on energy consumption and economic performance," Energy Policy, Elsevier, vol. 168(C).
    18. aus dem Moore, Nils & Großkurth, Philipp & Themann, Michael, 2017. "Multinational corporations and the EU emissions trading system: Asset erosion and creeping deindustrialization?," Ruhr Economic Papers 719, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    19. aus dem Moore, Nils & Großkurth, Philipp & Themann, Michael, 2019. "Multinational corporations and the EU Emissions Trading System: The specter of asset erosion and creeping deindustrialization," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 1-26.
    20. Koch, Nicolas & Basse Mama, Houdou, 2019. "Does the EU Emissions Trading System induce investment leakage? Evidence from German multinational firms," Energy Economics, Elsevier, vol. 81(C), pages 479-492.

    More about this item

    Keywords

    Emissions trading scheme; Electricity; Micro data; Office buildings; Climate change;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envpol:v:23:y:2021:i:3:d:10.1007_s10018-020-00271-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.