IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p2026-d121239.html
   My bibliography  Save this article

Research on CO 2 Emission Reduction Mechanism of China’s Iron and Steel Industry under Various Emission Reduction Policies

Author

Listed:
  • Ye Duan

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Nan Li

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Hailin Mu

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Shusen Gui

    (Faculty of Management and Economics, Dalian University of Technology, Dalian 116024, China)

Abstract

In this paper, a two-stage dynamic game model of China’s iron and steel industry is constructed. Carbon tax levy, product subsidy, carbon capture and sequestration (CCS) and other factors are included in the emission reduction mechanism. The effects of emissions reduction and the economic impact of China’s overall steel industry (and that of its six main regions) are investigated for the first time under different scenarios. As new findings, we report the following: (1) Not all factors declined. The overall social welfare, consumer surplus, output and emissions decrease with a gradual increase in the reduction target, whereas the carbon tax value, unit value of product subsidies and total subsidies show a rising trend; (2) A combination of multiple emissions reduction policies is more effective than a single policy. With the implementation of a combined policy, regional output polarization has eased; (3) Steel output does not exceed 950 million tons, far below the current peak. These results will help the industry to formulate reasonable emissions reduction and output targets. In short, in effort to eliminate industry poverty and to alleviate overcapacity, the industry should not only adopt the various coordinated reduction policies, but also fully consider regional differences and reduction needs.

Suggested Citation

  • Ye Duan & Nan Li & Hailin Mu & Shusen Gui, 2017. "Research on CO 2 Emission Reduction Mechanism of China’s Iron and Steel Industry under Various Emission Reduction Policies," Energies, MDPI, vol. 10(12), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2026-:d:121239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/2026/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/2026/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lambertini, Luca & Poyago-Theotoky, Joanna & Tampieri, Alessandro, 2017. "Cournot competition and “green” innovation: An inverted-U relationship," Energy Economics, Elsevier, vol. 68(C), pages 116-123.
    2. Dale W. Jorgenson & Peter J. Wilcoxen, 1997. "Fundamental U.S. Tax Reform and Energy Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-30.
    3. Demailly, Damien & Quirion, Philippe, 2008. "European Emission Trading Scheme and competitiveness: A case study on the iron and steel industry," Energy Economics, Elsevier, vol. 30(4), pages 2009-2027, July.
    4. STUART McDONALD & JOANNA POYAGO-THEOTOKY, 2017. "Green Technology and Optimal Emissions Taxation," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 19(2), pages 362-376, April.
    5. Wei Chen & Jin-Feng Zhou & Shi-Yu Li & Yao-Chu Li, 2017. "Effects of an Energy Tax (Carbon Tax) on Energy Saving and Emission Reduction in Guangdong Province-Based on a CGE Model," Sustainability, MDPI, vol. 9(5), pages 1-24, April.
    6. Poyago-Theotoky, J.A., 2007. "The organization of R&D and environmental policy," Journal of Economic Behavior & Organization, Elsevier, vol. 62(1), pages 63-75, January.
    7. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    8. Carlos Benavides & Luis Gonzales & Manuel Diaz & Rodrigo Fuentes & Gonzalo García & Rodrigo Palma-Behnke & Catalina Ravizza, 2015. "The Impact of a Carbon Tax on the Chilean Electricity Generation Sector," Energies, MDPI, vol. 8(4), pages 1-27, April.
    9. Susumu Cato, 2011. "Environmental policy in a mixed market: abatement subsidies and emission taxes," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 13(4), pages 283-301, December.
    10. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    11. Liang, Qiao-Mei & Fan, Ying & Wei, Yi-Ming, 2007. "Carbon taxation policy in China: How to protect energy- and trade-intensive sectors?," Journal of Policy Modeling, Elsevier, vol. 29(2), pages 311-333.
    12. Yasunori Ouchida & Daisaku Goto, 2016. "Cournot duopoly and environmental R&D under regulator’s precommitment to an emissions tax," Applied Economics Letters, Taylor & Francis Journals, vol. 23(5), pages 324-331, March.
    13. Kemfert, Claudia & Welsch, Heinz, 2000. "Energy-Capital-Labor Substitution and the Economic Effects of CO2 Abatement: Evidence for Germany," Journal of Policy Modeling, Elsevier, vol. 22(6), pages 641-660, November.
    14. Wendner, Ronald, 2001. "An applied dynamic general equilibrium model of environmental tax reforms and pension policy," Journal of Policy Modeling, Elsevier, vol. 23(1), pages 25-50, January.
    15. Moner-Colonques Rafael & Rubio Santiago J., 2016. "The Strategic Use of Innovation to Influence Environmental Policy: Taxes versus Standards," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 16(2), pages 973-1000, April.
    16. Zhang, Zhong Xiang, 1998. "Macroeconomic Effects of CO2 Emission Limits: A Computable General Equilibrium Analysis for China," Journal of Policy Modeling, Elsevier, vol. 20(2), pages 213-250, April.
    17. Ouchida, Yasunori & Goto, Daisaku, 2014. "Do emission subsidies reduce emission? In the context of environmental R&D organization," Economic Modelling, Elsevier, vol. 36(C), pages 511-516.
    18. Carlos Benavides & Luis Gonzales & Manuel Diaz & Rodrigo Fuentes & Gonzalo García & Rodrigo Palma-Behnke & Catalina Ravizza, 2015. "Correction: The Impact of a Carbon Tax on the Chilean Electricity Generation Sector," Energies, MDPI, vol. 8(6), pages 1-2, June.
    19. Bruneau, Joel F., 2004. "A note on permits, standards, and technological innovation," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1192-1199, November.
    20. Poyago-Theotoky, Joanna & Teerasuwannajak, Khemarat, 2002. "The Timing of Environmental Policy: A Note on the Role of Product Differentiation," Journal of Regulatory Economics, Springer, vol. 21(3), pages 305-316, May.
    21. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    22. Jan van Heerden & Reyer Gerlagh & James Blignaut & Mark Horridge & Sebastiaan Hess & Ramos Mabugu & Margaret Mabugu, 2006. "Searching for Triple Dividends in South Africa: Fighting CO2 Pollution and Poverty while Promoting Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 113-142.
    23. Till Requate, 2005. "Timing and Commitment of Environmental Policy, Adoption of New Technology, and Repercussions on R&D," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 31(2), pages 175-199, June.
    24. Jorgenson, Dale W. & Wilcoxen, Peter J., 1990. "Intertemporal general equilibrium modeling of U.S. environmental regulation," Journal of Policy Modeling, Elsevier, vol. 12(4), pages 715-744.
    25. Requate, Till, 2005. "Dynamic incentives by environmental policy instruments--a survey," Ecological Economics, Elsevier, vol. 54(2-3), pages 175-195, August.
    26. Puller, Steven L., 2006. "The strategic use of innovation to influence regulatory standards," Journal of Environmental Economics and Management, Elsevier, vol. 52(3), pages 690-706, November.
    27. Xie, Jian & Saltzman, Sidney, 2000. "Environmental Policy Analysis: An Environmental Computable General-Equilibrium Approach for Developing Countries," Journal of Policy Modeling, Elsevier, vol. 22(4), pages 453-489, July.
    28. Terry Eyland & Georges Zaccour, 2012. "Strategic Effects Of A Border Tax Adjustment," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 1-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kun He & Li Wang & Hongliang Zhu & Yulong Ding, 2018. "Energy-Saving Potential of China’s Steel Industry According to Its Development Plan," Energies, MDPI, vol. 11(4), pages 1-16, April.
    2. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    3. Ye Duan & Zenglin Han & Hailin Mu & Jun Yang & Yonghua Li, 2019. "Research on the Impact of Various Emission Reduction Policies on China’s Iron and Steel Industry Production and Economic Level under the Carbon Trading Mechanism," Energies, MDPI, vol. 12(9), pages 1-26, April.
    4. Junwei Chen & Weibin Chen & Yang Jiao & Xidong Wang, 2019. "Gasification Kinetics of Bituminous Coal Char in the Mixture of CO 2 , H 2 O, CO, and H 2," Energies, MDPI, vol. 12(3), pages 1-12, February.
    5. Di Li & Qianbin Di & Hao Zhang & Daquan Zhang & Zenglin Han & Ye Duan, 2022. "Research on the Impact of Output Adjustment Strategy and Carbon Tax Policy on the Stability of the Steel Market," Energies, MDPI, vol. 15(18), pages 1-31, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie-Laure Cabon-Dhersin & Natacha Raffin, 2023. "Cooperation in Green R&D and Environmental Policies: Taxes or Standards," Working Papers hal-03610541, HAL.
    2. Fukuda, Katsufumi & Ouchida, Yasunori, 2020. "Corporate social responsibility (CSR) and the environment: Does CSR increase emissions?," Energy Economics, Elsevier, vol. 92(C).
    3. Yasunori Ouchida & Daisaku Goto, 2022. "Strategic non‐use of the government's precommitment ability for emissions taxation: Environmental R&D formation in a Cournot duopoly," Australian Economic Papers, Wiley Blackwell, vol. 61(1), pages 181-206, March.
    4. Naoto Aoyama & Emilson Caputo Delfino Silva, 2022. "Endogenous Abatement Technology Agreements under Environmental Regulation," Games, MDPI, vol. 13(2), pages 1-30, April.
    5. Ouchida, Yasunori & Goto, Daisaku, 2016. "Environmental research joint ventures and time-consistent emission tax: Endogenous choice of R&D formation," Economic Modelling, Elsevier, vol. 55(C), pages 179-188.
    6. Naoto Aoyama & Emilson C.D. Silva, 2017. "Asymmetric Innovation Agreements under Environmental Regulation," CESifo Working Paper Series 6782, CESifo.
    7. Moner-Colonques, R. & Rubio, S., 2015. "The timing of environmental policy in a duopolistic market," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 15(01).
    8. Yasunori Ouchida & Daisaku Goto, 2012. "What is the socially desirable formation of environmental R&D?," IDEC DP2 Series 2-6, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).
    9. Ioanna Pantelaiou & Panos Hatzipanayotou & Panagiotis Konstantinou & Anastasios Xepapadeas, 2020. "Can Cleaner Environment Promote International Trade? Environmental Policies as Export Promoting Mechanisms," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 809-833, April.
    10. Shoji Haruna & Rajeev K. Goel, 2019. "Optimal pollution control in a mixed oligopoly with research spillovers," Australian Economic Papers, Wiley Blackwell, vol. 58(1), pages 21-40, March.
    11. Wesseh, Presley K. & Lin, Boqiang & Atsagli, Philip, 2017. "Carbon taxes, industrial production, welfare and the environment," Energy, Elsevier, vol. 123(C), pages 305-313.
    12. Soo Keong Yong & Lana Friesen & Stuart McDonald, 2018. "Emission Taxes, Clean Technology Cooperation, And Product Market Collusion: Experimental Evidence," Economic Inquiry, Western Economic Association International, vol. 56(4), pages 1950-1979, October.
    13. Soo Keong Yong & Stuart McDonald, 2018. "Emissions tax and second-mover advantage in clean technology R&D," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(1), pages 89-108, January.
    14. Yasunori Ouchida & Daisaku Goto, 2014. "Environmental Research Joint Ventures and Time-Consistent Emission Tax," Working Papers 2014.35, Fondazione Eni Enrico Mattei.
    15. Alberto Gago & Xavier Labandeira & Xiral López Otero, 2014. "A Panorama on Energy Taxes and Green Tax Reforms," Hacienda Pública Española / Review of Public Economics, IEF, vol. 208(1), pages 145-190, March.
    16. Yasunori Ouchida & Daisaku Goto, 2016. "Cournot duopoly and environmental R&D under regulator’s precommitment to an emissions tax," Applied Economics Letters, Taylor & Francis Journals, vol. 23(5), pages 324-331, March.
    17. Yanfang Zhang & Qianwen Tan & Yuchang Ji, 2023. "Input subsidy versus output subsidy for green R&D in a supply chain," Journal of International Development, John Wiley & Sons, Ltd., vol. 35(1), pages 97-126, January.
    18. Yuanying Chi & Zhengquan Guo & Yuhua Zheng & Xingping Zhang, 2014. "Scenarios Analysis of the Energies’ Consumption and Carbon Emissions in China Based on a Dynamic CGE Model," Sustainability, MDPI, vol. 6(2), pages 1-26, January.
    19. Wesseh, Presley K. & Lin, Boqiang, 2016. "Modeling environmental policy with and without abatement substitution: A tradeoff between economics and environment?," Applied Energy, Elsevier, vol. 167(C), pages 34-43.
    20. Rabah Amir & Adriana Gama & Katarzyna Werner, 2018. "On Environmental Regulation of Oligopoly Markets: Emission versus Performance Standards," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 147-167, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2026-:d:121239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.